
AD/A-092 065

ARPANET ROUTING ALGORITHM IMPROVEMENTS. VOLUME I

E. C. Rosen, et al

Bolt Beranek and Newman, Incorporated
Cambridge, Massachusetts

August 1980

"Ni

I

AA

BBN Report No. 4473

ARPANET Routing Algorithm Improvemencs

Volume I

August 1980

SPONSORED BY
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY AND

DEFENSE COMMUNICATIONS AGENCY (DOD)
MONITORED BY DSSU UNDER CONTRACT NO. MDA903-78-C-0129

ARPA Order No. 3491

"Submitted to:

1.irector
SDefense Advanced Research Projects Agency
1400 Wilson Boulevardt
Arlington, VA 22209

Attention: Program Management

and to:

Defense Communicatlons Engineering Center
1860 Wiehle Avenue
Reston, VA 22090;

Attention: Dr. R.E. Lyons

The views and conclusions contained in this document are those of
the authots and should not be interpreted as necessarily representing
the official polic.es, either expressed or implied, of the1 Defense
Advanced Research Projects Agency or the U.S. Government.

91PODWcED 6yNATVONL TECHNICAL
INFOPMATION SERVICE

"11. C 'M19 Of C01MIRCE

INCLASSIFIED
S9CURITY CLMSIFICATION OF THIS PAQOr r•hen Dato __f_ _ _ _ _

REPORT DOMaMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORMC ofT~. NqVT ACCSSIOMN NO. . CItECm.T'S CATALOG NUMBERV44734p q0 K5

ARPANET Routing Algorithm Improvements. 8//7 Te a Rpor

S~Volume I, L-;.LMO,• R.•OTN.[

/ 44'13I7. 0U4R~ CINR'AC Orl GMANT ~Pe
j E.C. Rosen P.J. Sevcik R. Attar/ A2

J. Mayersohn G.J. Williams A

9. PRFORMIHG ORGANIZATION NAME AND ADDRESS ri|. "'•)GRAM ELEMENT. PIROJLECT. TASK
j V Bolt Beranek and Newman, Inc. APEA & WORK UNIT NUMS "

50 Moulton Street, Cambridge, MA 02138 ARPA Order-3491

i,. CONTROLLIN, OFFICE NAME AND ADDRESS Z..- EPORT DATE

Defense Advanced Research Projects August 1980
1400 Wilson Blvd., Arlington, VA 22290 U2.•,SER oF PAGES

I. ONTORING AGENCY NAME & AODDAESS(If differenl t from Contralhltd Office) I•- . SECURITY CLASS. (of this eeport,*

Defense Supply Service - Washington UNCLASSIFIED
Room 10 245, The Pentagon Me. tCATION IDOWNGfA VIN G
Washington, DC 20310 00MCElSIUIRT

It, DISTRIBUTION STATEMENT (of this Report)

UNCLASSIFIED/UNLIMITEDof
17, 0.1'TRIBUTION STATEMENT (of the oobatat ontoted in Stock.^*. If different fI, Repcort)

10. SUPPLEMENTARY NOTES

19. K-Ey WORDS (CooInum on revers.e side i n.e .eary and Identlif, by block number)

computer networks, ARPANET, buffer management, logical addressing, routing
algorithms, AUTODIN II, multi-path routing, congestion control, simulationf SIMULA, statistical analysis of simulation data, network simulation.

20. AUSTOACT (Cont. n, on rever., tide If n•cealy aid *Id",fty b! •bo

This report covers work performed during the first year of the extension
of the ARPANET Routing Algorithm Improvements Ccntract. Network buffer
managemenL issues are discussed and a new buffer managemet scheme for f
the ARPANET is designed. Logical addressing is discussed, and a design
is given for a logical addressing scheme suitable for ARPANET or DIN II.
The applicability of ARPANET Routing to DIN II is evaluaced. The possi-

f bility of extending ARPANET's routing algorithm to provide multiple(cont'dJ

DD I j 1473 EDITION4 01 1 NOV% 15.131101.1K 7C LNCLASS)PIED

69CURAI-It Cý.ASVFICAT!.ýtI OF THIS P AG!: (When Dot~e &ftd

~~(UNCLASSIFIED 1
S•SECURITY CL.ASSIFICATION OF THIS PAGE (Whe De,-- lntrm.

20. (continued)

routes between a given pair of nodes is discussed, and a preliminary
design is proposed, which, however, still contains a number of unsolved
problems. A set of metrics for evaluating congestion control algorithm
is proposed, and AUTODIN II congestion control scheme is evaluated. A

new congestion control scheme, suitable for networks containing ARPANET
routing, is p:'•posed. BBN's network simulator is described, and its
command language is specified. Various simulation design decisions are
discussed. The statistical properties of simulation data are discussed
and various techniques for analyzing and interpreting simulaticn data
are proposed.

I.iL
II

LiB

ci
1I

U

1 6

UNCLASSIFIED

SECURITY CLA$SIrCATIOH Of THIS PAGE (When Date Enterad)

Report No. 4473 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

INTRODUCTION .. vi

1. BUFFER MANAGEMENT IN THE IMP 1

1.2 General Considerations of Buffer Management 3

1.3 Buffer Management with an Ample Supply of Buffers . . . 8

1.3.1 Buffering for Output 16

1.3.2 Buffering for Input 17

1.3.3 Buffering for Generating Control Messages 26

1.3.4 Buffering Data at the Source Node 27

1.14 Buffer Management with a Shortage of Buffers (ARPANET) - 30

1.5 Detailed Specification of an Improved Buffer Scheme 49

2. LOGICAL ADDRESSING 55
2 1 Introduction . 55

2.1 ntrouctin.........................*...............

1: 2.2 Translating Logical to Physical Addresses 60

t 2.2.1 Translation Locus 60

2.2.2 Translation Methodology 64

2.3 Organizing the Translation Tables71

2.4 Initializing the Translation Tables 76

S2.5 Updating the Translation Tables 83

2.6 Operational and Implementation Considerations 101Al

Report No. 4473 Bolt Beranek and Newman in.c.

2.7 Network Access Protocol Implications 104

3. THE APPLICABILITY OF SPF ROUT"NG TO AUTODIN II 108

4. A MULTIPLE PATH ROUTING ALGORITHM BASED ON SPF 113

4.1 The Objective Function -- Maximizing Throughput . . . 133

4.2 Choosing a Set of Multiple Paths to Maximize Throughput 137

4.3 On the Notion of a Bottleneck 141

4.4 The Sequence of Sub-networks and the Forwarding Problem 146

14.5 Measurement of Link Utilization 150

4.6 Apportioning the Flows to the Paths 159

4.7 The Generation of Updates 173

4.8 More on Stability 187

4.9 Specification of the Routing Algorithm 204

4.10 The Sub-Optimality of Incremental Changes 213

4.11 The Delay Issue 216

5. CONGESTION CONTROL METRICS AND THEIR APPLICATION TO RAFT 217

5.1 Definition of Congestion Control 219

5.2 Types of Congestion Control Algorithms 224

5.3 Congestion Control Metrics. 228

5.3.1 Sensitivity to Traffic Patterns230

5.3.2 Effectiveness 232

5.3.3 Fairness 234

5.3.4 Stability 238

S' - ii -

SReport No. 4473 Bolt Beranek and Newman Inc.

5.3.5 Responsi'reness 240

5.3.6 Overhead 244

5.3.7 Robustness 248

5.3.8 Control Feedback Coupling 250

S5.4 Application of The Congestion Control Metrics ro RAFT 252

5.4.1 Backgrcund. 254

5.4.2 RAFT Congestion Control Evaluation 258

5.4.2.1 No Baffer or CPU Utilization Measurement .. 259

S(5.4.2.2 Delta-K Measurement Accuracy262

5.4.2.3 Lack of Smoothed Measurement 266

5A4.2.4 Selection of Offending Hosts 271

5.4.2.5 Reliability of CN and NDH Propagation . . . 278

f-(1 5.4.2.6 Sudden Throttling at Source Switches 28'

5.4.2.7 Circumventing the Global Window 285

5.4.3 Conclusions 287

3 6, A NEW CONGESTION CONTROL PROPOSAL 290

SL 7. SIMULATION NETYORK DESCRIPTION 301

S7.1 IMP 301

7.2 Host 301

7.3 Task , *.......................303

7.4 Routing and Forwarding 305

7.5 Delay Mepsurement........................ 306

7.6 HostOut 307

S• • lii -

Report No. 4473 Bolt Beranek and Newman Inc.

7.7 Hostln 308

7.8 ModemOut 309

7.9 ModemIn 311

7.10 Priority Structure 312

7.11 The Line Protocol 314

7.12 Routing Update Protocol 316

7.13 Timeout Process 318

7.14 IMP Time 318

7.15 Buffer Management 320

8. THE SIMULATION COMMAND LANGUAGE 322

8.1 Introduction 322

8.2 List of Commands 325

8.3 Parameters 330

8.4 IMP parameters 331

8.5 Host parameters 331

8.6 Line parameteri 332 i
8.7 Tracing and Debuggitig 332 fl
8.8 Global Debugging Flags 334

8.9 Tracing Output 336

9. PROBLEMS IN THE ANALYSIS OF SIMULATION DATA 337

9.1 Basic Statistical Concepts 340

9.2 Statistical Aspects of Simulation Experiments 351

-iv-

Report No. 4473 Bolt Beranek and Newman Inc.

10. SIMULATION ANALYSIS FACKAGE 368

10.1 Discussion of Algorithms 368

10.1.1 Batch Means 373

10.1.2 Autoregressive Models 391

10.1.3 Transient Analysis 407

10.2 Specification of the Analysis Package 418

10.3 Specification of Analysis Routines 427

10.3.1 Data Handling Utilities 427

10.3.2 Statistics Utilities 428

i0.3.3 Major statistical Routines 432

10.3.4 Primary Analysis Routines 437

11. RANDOM NUMBER GENERATOR 443

I;

T•

iv

Report No. 4473 Bolt Beranek and Newman Inc.

INTRODUCTION

This report covers work performed during the first year

of the extension of the ARPANET Routing Algorithm Improvements

contract. It describes technical work in progress. Each chapter

is an independent treatment of a technical area of investigation.

In Chapter 1, we discuss the issues involved in

designing a good buffer management scheme for a packet switching

node. This is an area of nodal design which, although somewhat

neglected, can have a significant impact on network performance,

especially under heavy load. We begin with a discussion of the

requirements a buffer management scheme must meet, both when

there are few buffers and when there are many buffers. Some

general principles of buffer management design are then

developed. These principles are applied to the particular case

of the ARPANET, and an improved buffer management scheme is

presented. It is intended that these improvements be implemented

during the second year of the contract, if memory constraints

allow it.

Chapter 2 is concerned with logical addressing in

computer networks. It begins with an explanation of the notion

of logical addressing and a discussion of the functional

requirements which a logical addressing scheme must meet. There

is an extensive discussion of such issues as: how to translate

- vi -

b)

Report No. 4473 Bolt Beranek and Newman inc.

logical to physical addresses, where to do the translation, how

to organize, initialize, maintain, and update the translation

tables, and how to use logical addressing as a basis for

multi-homing of hosts. A design of a logical addressing scheme

is proposed, which is intended to be suitable either for the

ARPANET or for AUTODIN II

In Chapter 3, we discuss several issues concerning the

applicability of the ARPANET's SPF routing algorithm to AUTODIN

II. The bandwidth requirements of SPF routing in AUTODIN II are

shown to be quite modest. We argue that the most effective

implementation of SPF routing in AUTODIN II would treat each SCM

(as opposed to each PSN) as a separate node. We discuss ways of

Cf treating the intra-PSN bus and the parallel trunking, and show

that these features of AUTODIN II are easily handled by SPF

routing.

In Chapter 4, we consider the possibility of extending

and modifying the SPF routing algorithm so that it can maximize

network throughput by providing multiple paths between each pair

of nodes. Such an algorithm would have several components,

ri including: (a) path-selection computation, (b) measurement of

link and node utilization, (c) updating, (d) apportioning flows

j [to paths, and (e) forwarding packets along a particular path.

All these components are extensively discussed, and algorithms

are proposed for each one.

- vii -

-A.

Report No. 4473 Bolt Beranek and Newman Inc.

In Chapter 5, a number of criteria, or metrics, for

evaluating congestion control algorithms are discussed. These

criteria are based upon qualitative practical network design

Qcnsiderations, rather than theoretical quantitative

considerations. The AUTODIN II congestion control technique

(RAFT) is evaluated against these criteria, and is found to be

seriously deficient in several important respects. Based on this

critique, various improvements are suggested.

In Chapter 6, we propose a new congestion control

technique which is suitable for networks containing SPF routing.

In this new technique, a measurement is performed on each link to

determine whether that link is underloaded, maximally loaded, or

overloaded. This information is fed back to source nodes via the

SPF routing updates, where a slight modification of the SPF

algorithm enables each node to determine whether its path to each

other node is underloaded or overloaded. Based on this

information, each source node can meter its traffic to avoid

sending too much on paths which are overloaded.

One of our main tasks undeýr this contract has been to

develop a network simulator that can be used to test various

routing and congestion control strategies. While development is

still proceeding, Chapter 7 describes the current state of the

simulator, -'pecifying the way in which the simulator models a

network node. Chanter 8 specifies the command language used to

- viii -

Report No. 4473 Bolt Beranek and Newman Inc.

run the simulator. Appendix I discusses some of the features of* the SIMULA programming language, and explains why we thought it

to bp particularly appropriate for our simulator. A detailed

implementation guide to the simulator is given in Appendix 2.

Chapter 9 discusses theoretical issues in the

statistical analysis of simulation data. Two major problems are

discussed. The first problem is the computation of confidence

intervals for network performanre parameters as estimated from

the simulation output data. The second problem addressed is the

bias which is present in the output data due to the initial

conditions of the simulated system. We show that analysis of

simulation data must be done quite carefully and with at;tention

to the statistical niceties, if we are to avoid drawing false or

ungeneralizabie conclusions.

I Chapter 10 discusses the specific algorithms which are

implemented in our simulation analysis routines in order to

estimate confidence intervals and eliminate the bias due to the

initial conditions. A complete description of the simulation

Sanalysis software is provided. The routines are applied to

I U simple simulations and very good results are obtained.

In chapter 11, we discuss the procedures we used to

validate the random number generator which is used in our

Ssimulator. It is quite important to be sure of the properties of

- ix -

Report No. 4473 Bolt Beranek and Newman Inc.

the random number generator, since any problems with the

generator will infect all the results obtained from the

simulator. We conclude that the SIMULA random number generator

is sufficiently random for our purposes. This chapter also

provides an example of the techniques we will use to validate

other parts of the simulator.

3X

.----

Report No. 4473 Bolt Beranek and Newman Inc.

1. BUFFER MANAGEMENT IN THE IMP

1.1 Introduction

In Chapter 7 of BBN Report No. 4088 (ARPANET Routing

Algorithm Improvements -- Third Seminannual Technical Rý'port), we

described the buffer management procedures currently in effect in

the Honeywell 316/516 IMP. In a section on possible

improvements, we pointed out several defects in the current

scheme. Some of these defects may be thought of as "bugs,; in

the sense that they are due to details of the implementation

which are in violation of the principles which u.,.erlie the

design of the scheme. For example, under certain conditions, a

buffer may be counted simultaneously as both a "reassembly"

buffer and a "-store-and-forward" buffer. Under other conditions,

a single buffer may be counted as two store-and-forward buffers.

Viewed conceptually, this is meaningless. It makes no sense to

count a single buffer twice. As discussed in BBN Report No.

,4088, the only effect of the "double counting" is to increase the

holding timie of buffers, thereby slowing the flow of data through

the IMP. The source of these problems is that the TASK routine,

1L when determining whether a particul3r buffer may be devoted to a

"store-and-forward" function or a "reassembly" function, does not

Ltake into consideration the present state of the buffer; it

simply assumes the buffer to be "uncounted" (this term is

explained in BBN Report No. 4088). This defect arose because the

-1-

Report No. 4473 Bolt Beranek and Newman Inc.

design principles of the buffer management scheme were unwisely

sacrificed to simplify the implementation. The simplification is

not great, however, and it would not be difficult to re-code the

procedure to bring its implementation into agreement with the

design principles.

However, we did not, in our previous report, make any

attempt to make explicit the principles underlying the design of

the ARPANET buffer management scheme, or to evaluate those

principles c.itically. It would be unwise to fix implementation

bugs in the current procedures without first considering whether

there may also be design bugs in the procedures. That is the

purpose of this chapter. We will begin by considering, in

general, the function (if a buffer management scheme in a

packet-switching network. We will discuss the way in which such

a procedure might be designe6 in an "ideal" network, where there

is an ample supply of buffers. We will see that, no matter how

many buffers there are, careful buffer management is essential to

good performance. We will then discuss the way in which

procedures designed for an idea: neetwork need to be modified for

a network (like the ARPANET and most other networks" in which

buffer space is a scarce resource. Finally, we will compare the

current ARPANET buffer management procedures to the procedures we

develop, 2nd will recommend changes to the former.

-2
• - 2 -

Report No. 447?7 Bolt Beranek and Newman Inc.

1.2 General Oonsiderations of Buffer Management

A network node must execute mary different functions for

which it requires buffers. Among these functions are:

1* Trarnsmitting packets on the various output devices

'.inter-noda trunks or host access lines). Packets must

1be buffered while queuing for these devices, while in

t,,&nsmission on these devices, and (sonmetimes) while

awa.iting acknowledgment from the node or host on the

other side of the deviae.

2) Feceiving packets from the various input devices.

3) ieasscmbliag messages so they can be transmitted to trie

(estination host.

S4) Frocessing packets. Packets must be buffered while the

CPU is processing them, and they may have to occupy

buffers while queuing for a busy processor.

5) Creating protocol or control messages. The IMPs often

L need to create control messages in order to run the many

protocols neces-ary for proper network operation.

It. ahould be c!car thxat- no matter how many buffers exist in a

node, a approach to buffer management cannot

possibly succeed. in a laissez-faire approach, buffers are

Report No.' 4473 Bolt Beranek and Newman Inc.

allocated to the various processes that need them on a

first-come, first-serve basis. Any process, at any time, can

obtain any number of buffers that are available at that time. No

import is given to considerations of fairness or of overall

network performance. Therefore, a laissez-faire scheme will be

prone to lock-up. Suppose, for example, that the output

Sprocesses in some node have taken all the buffers. Then no input

can be done. if, as is often the case, the output processes

cannot free their buffers until an acknowledgment is received

from some other node, and if acknowledgments cannot be received

because no buffers are available for input, then there is a

Sdeadlock, and the buffers will never be freed. it is important

to understand that this sort of deadlock is not caused by a

shortage of buffer space. No matter how much buffer space is

available; it is always possible, for example, that the network

will try to utilIze some output devsice at a higher capacity than

s p a le o. handfn nv. With a laissez-faire approach to

buffer manage-- -eit thore is no bound on the niumber of buffers

which miay end up hold,•;.n packets for the overloaded device. The

possibi.is. of deadlock cannot be eliminated by adding more

bluffers.

This oa-ticular sort uf deadlo•k is ,ust one example of a

more gene,-al o or the network to oerforfi well; all the

DrcoCesses in the nodes must be able to run at an adequate rate.

• ,-4 -

L

Report No. 4473 Bolt Beranek and Newman Inc.ii.
This cannot be guaranteed unless each process is guaranteed the

resources that it needs, Unless each process is explicitly

prevented from "hogging" res,-ources, other processes may be unable

to run, and the network will not, in general, be able to give

adequate performance. It must be understood, of course, that the

buffer supply is not the only resource which must be managed in

order to prevent hogging. Similar sorts of deadlocks can occur

if some processes are a~lowed unrestricted access to CPU cycles,

thereby preventing otzers from ever running at all. Although

this chapter is primarily concerned only with management of the

buffer space resource, management of the CPU resource is equally

important. Furthermore, it must not be imagined that deadlocks

are the only sort of performance degradation against which a

buffer management scheme must protect. Freedom from deadlocks is

only a necessary, not a sufficient, condition of adequate network

performance. A scheme which dedicates some small number of

buffers to each process, while taking a laissez-faire approach to

the large majority of the buffers, may prevent deadlocks, since

it will permit each process to run at some slow but non-zero

rate. However, such an approach may not allow all the processes

to run at "adequate" speeds; if some processes are running "too

slowly," then ordinary users of the network may not be able to

I •distinguish that situation from the situation where there is a

deadlock. The problem is the general one of "fairness." The

- purpose of a buffer management scheme is to ensure that no

Report No. 4473 Bolt Beranek and Newman Inc.

process gets either more or less than its fair share of the

buffer resource. (It is worth noting that simply specifying a

protocol in some formal language, i.e., in a way which is not

implementation-specific, and proving it to be deadlock-free, does

not guarantee that the protocol will perform fairly. Such formal

specifications almost never address such important issues as

buffer management or fairness. In fact, by abstracting the

protocol specification from implementation considerations, such

issues are only obscured and made easier to overlook.) Of

course, such notions as "adequate performance," "too slow," and

"fair share" are hopelessly qualitative. Implementing a buffer-

management scheme in an actual network would require giving some

quantitative interpretation to these notions. The precise way in

which these notions are quantified would depend on the design

objectives of the particular network, as we)l as its performance

<:haracteristics, and it would probably require a large degree of

arbitrariness. This does not mean, though, that the qualitative

considerations cannot guide the development of a buffer

management procedure, but only that any such procedure should be

sufficiently parameterized so that it can be tuned to meet the

particular requirements of a particular network.

The considerations raised above do not mean that there

should be no sharing of buffers among processes, but only that

the sharing should be controlled so that considerations of

-6

iteport No. 4473 Bolt Berane1k and Newman Inc.

|

fairness and overall network performance can play a rile, There

is, of course, a disadvantage to restricting the amount of

sharing of buffers among processes. if a buffer is availal?.e for

process A, but not for process B, then there will be , itutions

in which a buffer must lie idle, because process A does not nevd

it, even though process B really has a use for it. In these

particular situations, the performance of process B (and possibly

of the whole node) may be degraded. The justification for

keeping the buffer idle though is that it is possible that

process A will have a need for the buffer before process B would

finish with it, and that if such a situation were to arise,

overall performance would be improved by keeping the buffer idle

until needed 'oy process A. The validity of the justification

depends on the probability that process A really will need the

buffer before process B would finish with it. This sort of

probability is very difficult to evaluate a priori. Furthermore,

the probability may change as network conditions change. This

suggests that we might want to vary the rnumber of buffers

reserved for particular processes as a function of the
utilization of resources by the various processes. That is, the

buffer manage.ment scheme may need feedback from a more general

congestion control scheme which can measure the pattern of

resource, utilization and determine whether it is satisfactory.

This is only r.qtural. The purpose of a congestion control scheme

is to ensure that the demands placed on resources in the network

E-7

iReport No. 4473 Bolt Beranek and Newman inc.

do not exceed the capacity of the resources, and that the

resources are allocated to the demands in the way that yields

best cverall network service. In order to achieve these goals,

the algorithm (or at least the parameters of the algorithm) used

to assign resources to demands may need to change as the pattern

of demands changes. A buffer management scheme is an algorithm

for assigning one particular kind of resource 'buffers) to the

demands made on that resource. Hence it is just a part of a

congestion control scheme, and may need to interact with the

other parts of the scheme for best overall performance.

1.3 Buffer Management with an Ample Supply of Buffers

If we were designing a new network, with an ample zmnzunt of

buffer space, one of the important desiderata of the buffer

management scheme would be ts enable all output devices (i.e.,

hosits and inter-node trunks) to run at their rated capacity.

Transml'ssion of packets eve. an output device is usually

controlled by means of a protocol which requires the packet to

remain buffered until a positive acknowledgment is received, The

number of buffers needed to run such a device at full capacity is

a function both of the transmission speed of the device and of

the time it takes (on the average) for acknowledgments to return,

which itself is a function of the physical length of the

transmission line (speed-of-light propagation delay) and the

processing latenoies of the device which is receiving the output.

ýA

~I,

Report No. 4473 Bolt Beranek and Newman Inc.

For each output device it is relatively straightforward to

compute this number of buffers, at least approximately. To

ensure that each output device can always run at its rated

capacity, the buffer management scheme must "dedicate" that

number of buffers to the particular output device in question.

It is important to understand just what it means to

"dedicate n buffers" to a particular device or process. It does

not means that certain physical buffers (i.e., physical areas of

memory) are set aside for use only by that process. It means

only that the process should always be able to obtain n buffers

whenever it has a need for n tuffers. There is no reason at all

why the same n physical buffers should be used each time. To see

exactly what this means in practice, we must consider the

mechanism whereby a buffer is (logically) moved from a source

process to a destination process. At any given time, a buffer

which is not free is considered to be under the control of some

process. When that process has completed its processing of the

buffer, it must somehow release control of it. In some cases

j](e.g., a packet has been traasmitted on an inter-node trunk and

an acknowledgment for it received) the packet which is in the

I Lbuffer is no longer needed at that node, and the buffer can be

freed. In other cases, however, control of the buffer must be

turned over to some other process. An example is a packet which

is under control of the forwarding process of the routing

-- 9--

Report No. 4473 Bolt Beranek and Newman Inc.

algorithm. Once the routing algorithm decides where to forward

the packet, the buffer in which it resides must be turned over to

some output process which will ensure its transmission ovtr the

appropriate output device. Before turning the buffer over to the

next process, it must be determined whether doing so would

prevent any other process from obtaining the number of buffers

that have been "dedicated" to it. If so, the buffer cannot be

turned over to that destination process. If the packet residing

in the buffer is under control of some sort of reliable

transmission procedure (e.g., the ARPANET's IMP-IMP protocol),

the buffer can simply be freed. This will not result in loss of

the packet, since the reliable transmission procedure will ensure

that the packet is seen again, and again, until it is finally

accepted. This is usually the case in the ARANET with a packet

that has been received from a neighboring node. If the receiving

node discards the packet without sending an acknowledgment to the

transmitting node, the latier ncde can usually be relied upon to

send the packet again. (Note that this implies that, in the

ARPANET, the receiving node cannot send an inter-node

acknowledgment for a packet until that packet has been turned

iver to its final output process.) On the other hand, some

packets may not be under the control of a reliable transmission

procedure. This may be the case with control packets that are

created in the node itself and which must be transmitted to some

other node for reasons determined by some end-end protocol.

- 10 -

Report No. 4473 Bolt Beranek and Newman Inc.

"Freeing the buffer occupied by such a packet may result in loss

of the packet. Since this is undesirable, if the buffer cannot

be given to its destination process, it must be returned to the

source process, where it must sit on some queue until some future

time when it can be accepted by the destination process.

In general, when naking the determination as to whether a

buffer can be turned over to a particular process, it is not

sufficient merely to consider the number of buffers already in

control of the destination process. One must also take into

consideration the source process of the buffer. After all, there

may be cases in which the source process and the destination

process share a common pool of buffers. In such cases, buffer

management considerations can never cause the destination process

to refuse the buffer, no matter how many buffers are already

under its control. It follows that the correct decision as to

-!hether a buffer ought to be refused cannot be made without

knowledge of its source process. Also, only by considering the

buffer's source process can it be determined whether or not the

buffer, if refused, will be freý-U. This is important to know,

since once it has been decided that a particular packet cannot be

discarded at will, no process should ever reject the packet as a

result of buffer management considerations. Any process that

will not be able to obtain an adequate number of buffers if the

packet is accepted will also be unable to obtain an adequate

V -

Report No. 4473 Bolt Beranek and 'Newman Inc.

number of buffers if the packet is rejeced. After all,

rejection of the packet will merely cause its buffer to be helG

in a queue somewhere else in the node until it can be accepted.

Since the buffer cannot be freed, it will not become available

for use by any other process, so there is no point in refusing

it. Rejecting the packet will serve only to increase its delay,

without any countervailing advantage. This may mean that the

number of buffers under the control of a given process exceeds

the nominal maximum which we have decided to allow to that

process. The point of the buffer management scheme, however, is

not so much to prevent a process from obtaining more than some

maximum number (.f buffers as to ensure that a process can always

obtain some minimum number of buffers. In the sitiation just

described, holding one process to a certain maximum number of

buffers does not help any other process to obtain its minimum.

And while moving the buffer from the source process to the

destination process in this situation may cause the source

proceb• to have less than its minimum number of buffers, it

cannot hurt the performance of the source process, which, after

all, has already finished with its use of the buffer. There is L

certainly no ooint in forcing a process to keep control of a

buffer with whica it is finished; that coul.d serve only to

degrade overall performanct.

-12-

fleport No. 4473 Bolt Beranek and Newman Inc.

To put the point another way, once the node has committed

itself not to discard the packet, all buffer management

considerations are otiose. Of course, this is not to say that a

packet to which the node is committed ought never to be refused

by any process in the node, but only that considerations of

buffer management can play no role in the refusal. There are

many resoutoces other than buffer space which may be in short

supply; management of these resources may well dictate the

rejection of a packet to which the node is committed. However,

the same considerations apply. A packet should never be rejected

due to resource management considerations unless rejecting it

will free resources which would not be free were the packet

accepted.

Of course, this principle may have unfortunate side-effects

that must be controlled. If two packets are competing for buffer

space, and one of the packets is discardable while the other is

not, the non-discardable packet has an advantage, since it cannot

be refused. For example, in the ARPANET, packets which an IMIP

receives from a neighboring IMP are discardable, since they are

controlled by a reliable transmission procedure (the IMP-IMP

protocol) and will be retransmitted if dropped. Packets received

from a host, however, are controlled by the 1822 protocol, which

does not provide for retransmissions, and which in fact assumes

that the IMP will not drop a packet once it has fully received

i1
-13 -

Report No. 4473 Bolt Beranek and Newman Inc.

it. This fact gives packets received from hosts an unfair

advantage over packets received from neighboring IMPs in the

competition for buffer space. This is a particularly unhappy

situation, since it can lead to the violation of one of the basic

principles of congestion control, namely that packets already in

-.he network should be favored over packets just entering the

netwo-;.. The correct solution to this problem, of course, is to

refrain from using protocols which force a node to treat a packet

as non-discardable before all the resources needed to process

that packet have been obtained. We will return to this issue

when we discuss the particular case of buffer management in the

ARPANET.

It should also be noted that moving a buffer from a source

process to a destination process typically requires the mediation

of a third process which serves as the Dispatcher. In the

ARPANET, this is the function of the TASK process. Whil a

buffer is queued for or being processed by the Dispatcher, it is

still considered to be under the control of the source prccess,

for purposes of buffer management. The reason, of course, is

that the decision as to whether a particular destination process

must refuse the buffer is independent of whether the buffer is

being passed to it directly by the source process, or whether it

is being passed to it by the Dispatcher. Therefore, it makes no

sense to treat the Dispatcher itself as a sourcl. process.

- 14-

Report No. 4473 Bolt Beranek and Newman Inc.

Similarly, since the Dispatcher itself can neveýr refuse a buffer,

it makes no sense to treat it as a destination process either.

The use of a dispatching process should be transparent to the

buffer management scheme.

Sometimes a buffer may need to be under the simultaneous

control of two distinct processes in order for its packet to be

processed. If this is ever the case, the buffer management

scheme must ensure that whenever the buffer can be assigned to

one process, it can also be assigned to the other. If the buffer

cannot be processed unless controlled by both processes, then a

situation where it can be controlled by one process but not the

other makes no sense at all. Such a situation would simply

result in a waste of space, by allowing a buffer to be occupied

by a packet which cannot be processed. This illustrates a most

important point in the design of a buffer management scheme. The

purpose of buffer management is to ensure good overall network

performance. Therefore, one cannot determine how many buffers

need to be dedicated to a process by considering that process in

isolation. Rather, one must consider the role that that

particular process plays in determining overall network

performance.

-15-

Report No. 44I73 Bolt Beranek and Newman Inc.

1.3.1 Buffering for Output

We now consider, in general, which sorts of processes in the

network nodes need to have buffers dedicated to them. Whenever a

particular device is running at close to its maximum capacity and

the demands on the device vary stochastically, the device will

sometimes be overloaaed. That is, although the device is fully

utilized during some interval by the presence of n packets, a

larger number of packets destined for that device will arrive

during that interval. If the device is overloaded in the steady

state, then some sort of congestion control procedure must be

brought into effect to reduce the demand for that particular

device. We are presently assuming, though, that the device is

not overloaded in the steady state, and that any intervals of

overload are caused by the variance in the demand. In such a

situation, it is desirable to smooth the effects of the temporary

overload by buffering the excess packets. So the buffert

management system should allow mnore buffers to be assigned to an

output device at a given time than are strictly needed to run

that device at full capacity. The question is whether a certain

number of excess buffers should be "dedicated" to each device (in

the sense described above), or whether the excess buffer5 should

be in a common pool, sharable aiong all the output devices on a

first-come, first-served basis. in this ;ase, it seems that the

buffers ought to be sharable. If all these buffers end Lip queued

- W

Report No. 41'73 Bolt Beranek and New-nan inc.

to a single output device, no other device is thereby prevented

Sfrom running :t full speed, since each device still has 'Its own

supply of dedicated buffers, Therefore there is nc reason to

stric'ly partition this additional buffer space.

One might argue that the numiber of buffers dedicated to a

particular device should only be enough to run the device at its

average rate, not at its maximum or peak rate. After all, the

purpose of having a sharable pool of excess buffers is to smooth

the effects of stochastic peaks. But stochastic peaks occur

whenever the average utilization of a device is exceeded, not

necessarily when its maximum utilization is exceeded. Thi

argument, however, ignores the fact that several devices may

exceed their average utilization at the same time. if this

happens, and if there are not enough buffers dedicated to each

device to run it at full speed, then some devices may be

under-utilized while others will be over~-utilized, which is what

the buffer management scheme ought to try avoid as far as

possible (at least- if the supply of buffers is a-mple)"

1.3.2 Buffering for Input

We have yet to discuss the issue of whether it is necessary

to dedicate buffers to the input devices, as well as to the

output devices. Packets may arrive at a node either from a

Sneighboring node, or from a locally-attached host. Receiving and

i - 17 -

Report No. 4473 Bolt Beranek and Newman Inc.

processing a packet requires a buffer, Even if all output

devices gre running at full speed and have their full complement

of buffers, it is still necessary to dedicate a certain number of

ad-ditional buffers to the input devices. Failure to do so can

result in the stopplng of all input whenever all the output

devices are fully utilized, At first glance, this might seem

like a desirable effect. After all, there is no point in

accepting input when the output devices are already overloaded;

to do so only leads to congestion. However, there are two

problems with this argument:

I) Not all packets which arrive at a node as input will

necessarily leave the node as output. Some packets are

control packets which may cause the processor to take

some action other than simply forwarding the packet

somewhere else. The node should always be able to

process these packets, no matter what the utilization of

its output devices.

2) Packets cannot be processed instantaneously; there is

always some latency. It may be the case that although

no output buffers are available at the time a packet

arrives, there will be buffers available by the time theBacket is processed (e.g., by the time the processor

determines which output device to route the packet to).

If no buffers are available at the time the packet is

-18-

t$

Y
Report No. 4473 Bolt Beranek and Newman Inc.

received, it has to be discarded and re-transmitted,

thus introducing a potentially large amount of

additional delay. This additional delay can be

eliminated by having a supply of buffers for input.

These arguments show that there should be some buffers

available for input over and above those which can be used for

output. We have not yet dealt with the issues of how many

buffers there should be, and whether they should be sharable

among all the input devices. It is sometimes suggested that

there should be two buffers dedicated to each input device, to

allow "double buffering." However, this is something of a

confusion. The point of double buffering is to allow an input to

be received while the previous input is being processed. This

makes sense if the time it takes to process the previous input is

less than the time it takes to receive the current input. Then

by the time the input is received, processing of the previous one

has been completed, and the buffer which held the previous input

can be re-used to receive the next input, while the current input

V is being processed. The purpose of such a scheme is to ensure

that reception of an input is not delayed by the time it takes to

L process the previous input. It is easy to see though that this

-:• scheme is not directly applicable to a packet-switching node.

There is no way to guarantee that the time needed to process one

packet is less than the time needed to receive the next packet.

-19-

Report No. 4473 Bolt Beranek and Newman Inc.

If the processor is busy, so that many packets are queued for it,

and the inter-node trunks run at a high speed, so that packets

are received very rapidly, merely dedicating two buffers to an

input device will not ensure triat a buffer is always available to

receive the next packet.

One might think that this means that a larger number of

buffs. s must be dedicited to each input line. By making the

number large enough, we can make the probability of missing an

input due to lack of buffer. as small as we like. But it would

be a mistake to do so. In general (though not invariably), after

a packet is input and processed, it will be routed to some output

device. There cannot be a shortage of buffers for input unless

either all the output devices are heavily loaded (i.e., all the

output-dedicated buffers are in use), or the processor itself is

overloaded (so that many buffers are queued for the processor).

A certain number of input-dedicated buffers are needed to permit

input to flow smoothly under such situations, as well as to

ensure that control packets can be processed. However, if the

node is really congested (i.e., either the output devices or the

CPU are overutilized in the steady state), having a large number

of input buffers will not smooth the flow; it will result only in

larger queues. The number of input-dedicated buffers need only

be large enough to enable the processor to run at its full

capacity while the output devices are also running at full

- 20 -

Report No. 4473 Bolt Beranek and Newman Inc.

L capacity. In order for an output device to run at full capacity,

it should always be able to get enough buffers so that it can

buffer all in-flight packets for the required period of timeV

while still having a small queue of packets waiting to be sent.

Running the processor at full speed requires only enough buffers

so that a small number of packets can always be on the queue for

the processor. This does not require a large number of buffers

to be dedicated to input; even less does it require a large

number of buffers to be dedicated to a particular input device.

However, as we have pointed out, it does require some dedicated

buffers.

We have row determined that there need not be a very large

number of buffers dedicated to input. We have not yet resolved

the question of whether these buffers should be sharable among

all the input devices, or whether a certain number of buffers

should be dedicated to each input device. To answer this

question we must determine whether, if the buffers are sharable,

some one input device can monopolize the buffer pool, preventing

input from any of the other devices. This might well be the

case, for three reasons. First, one input device might run at a

(L higher speed than the others. Second, one input device might be

more heavily utilized than the others, or might receive shorter

packets than the others. Third, some artifact of the interrupt

structure of the node might tend to favor certain devices over

- 21 -

Report No. 4473 Bolt Beranek and Newman Inc.

others. (Thus in the ARPANET, eech inter-IMP trunk is serviced

at a different priority level; naturally, the one that is

serviced with the highest priority is favored. This is due to

the interrupt structure of the 316, rather than the software.)

If any of these conditions hold, some InT.lt devices may be able

to utilize so many buffers that the others are slowed down.

Therefore a small number of buffers shculd be dedicated to each

input device.

Another reason for dedicating a few buffers to each input

device is the following. Certain inputs are nrocessed at a very

high priority level, without any queuing for the processor.

These inputs are always control packets, which are not going to

be routed to any output device. Furthermore, they are only those

few types of control packets which must be processed very

quickly. An example is the line up/down protocol rackE't of the

ARPANET. When one IMP sends one of these packets to n,,other, it

expects a reply back within a few hundred millisecondýA, no matter

how congested the processor of the receiving IMP is. The

receiving IMP must always be able to receive such packets and to

process them immediately, without having to queue them. If this

is not done, the line may be brought down spuriously, resulting

in a significant and needless degradation of network service. In

order to ensure rapid processing, at least one buffer mi;ust be

dedicated to each input device from which control packets of thi.-

-22-

Report No. 4473 Bolt Beranek and Newman Inc.

1 sort may be received. Furthermore, the use of these buffers is

even more restricted than that of other buffers which are

input-dedicated. Ordinarily, to say that n buffers are dedicated

to input is to say that there must always be n buffers which

F cannot be given to any process which is not input related. These

{ Ibuffers can, however, be queued to the processor (i.e., to the

Dispatcher) after being filled with an input. After all, the

main point of having input-dedicated buffers is to enable the

processor to continue to look at inputs even if all output

devices are running at full capacity. This goal cannot be

achieved unless the input buffers can be queued for the

processor. The point of this paragraph, on the other hand, is

that there be certain sorts of control packets which require

immediate processing. In order to ensure that a buffer is always

I. available to each input device to process such packets, each

input device should have one buffer dedicated to it which is not

queueable to any other process, including the Dispatcher. Is a

U Lsingle such bu'fer enough? The feasibility of having protocols

which require immediate processing of control packets is clearly

L dependent on the constraint that such packets be few and

far-between. Otherwise, there may just be too many of them to

process them all "immediately," and the protocol will not work.

As long as thii constraint is met, a single buffer should be

enough.

-23-

Report No. 4473 Bolt Beranek and Newman Inc.

It must be pointed out that the proper use of the

non-queueable buffer is often a matter of some subtlety. Suppose

a packet is received from some inter-node trunk, and that packet

contains node-node acknowledgments (possibly piggybacked on an

ordinary data packet) for packets that were transmitted (in the

opposite direction) over the same trunk. Suppose further that

after the packet is received, there are no more free buffers in

the nodes. Clearly, any data in the packet cannot be processed;

doing so would require queuing the packet for the processor,

thereby violating the rule that each input device have a

non-queueable buffer dedicated to it. But what of the

acknowledgments -- should they be processed? In the ARPANET,

received node-node acknowledgments are processed at the highest

priority level, with no queuing. So they can be processed

without violating the buffer management lfj that we have

advanced. Furthermore, one might argue that it is really

important to process the acknowledgments as soon as possible.

After all, processing received acknowledgments can result in

freeing buffers. Since, ex hypothesi, there are very few free

buffers in the machine, processing the acknowledgments is of

great importance, and should be done immediately. This argument,

however, does not hold under all conditions. When there are very

few free buffers in the node, it may be that a large number of

buffers are holding packets which have already been transmitted

on inter-node trunks, and which are awaiting acknowledgment. In

-24-

LJ

Report No. 4473 Bolt Beranek and Newman Inc.

this case, processing the anknowledgments as quickly as possible

has a salutary c'fect on the node's performance. However, there

[I are other conditions which may result in a short supply of free

buffers. Suppose, for example, that the node is CPU-bound, i.e.,

I L that the processor is overloaded. Then one would expect to find

the majority of buffers queued for the processor. (This

situation is very common in certain of the more heavily loaded

SARPANET nodes.) Since these buffers contain packets which have

not yet been transmitted out any inter-node trunk, the buffers

cannot possibly be freed as a result of processing

acknowledgments. The only way to expedite the freeing of these

buffers is to reduce the demand on the processor, especially the

demand at the higher priority levels. Thus the best strategy

here may be to not process the acknowledgments, thereby reducing

[.the processing load. Deciding whether a certain packet should be

processed immediately may depend not only on the function of the

packet, but on the conditions in the node at that time. This

shows again that a buffer management scheme is only part of a

more general congestion control strategy, and cannot be expected

to do the whole job by itself.

It must be understood, of course, that although the number

of buffers dedicated to input may be small, the number of buffers

controlled by the input processes (i.e. the number of buffers

p containing input packets which have not yet been dispatched) may

-25-

Report No. 44 7 3 Bolt Beranek and Newman !nc.

be much larger. In fact, all the buffers that are dedicated to

output processes may be under the control of input processes at

some time. This may seem paradoxical, but it is easy to see why

it is the case. Ln general, a packet cannot oe output uniebs it

has first been input. It makes no sense to refuse to use a

buffer for input because one wants to save it for output -- it

will never be used for out,,ut unless it is used for input first.

Therefore, all buffers must be available for inpu,, regardless of

the numbeir which are "dedicated" to other processes. (There is

one exception to this rule. it may be desirable to save a few

buffers for creating control messages, which, being created in

the node, are never Ectually input. These buffers would then be

unavailable for input. This is discussed below in greater

detail.) To restate the point -- while only a small number of

buffers need to be dedicated to input, a large number of buffers

need to be available ,o input.

1.3.3 Buffering for Generating Contro. Messages

There are other functinns besides input and output fcr which

Sbuffers are required. One such function ii 'he creatioL of the

control messages needed to run the various protocols used by the

node. Every so often, the node will have to respond to a certain

evert by creating a control packet and transmitting it to -nme

destin'ation. Often one node will contain buffer-, which cannot be

freed until a control Da6_ket from some othsr node is received.

. om6

AVMW
Report No. 4473 Bolt Beranek aid Newman Inc.

If a node cannot create the necessary control packets because it

cannot get buffers for them, then deadlocks are possible. Even

if deadlocks are avoided, good network performance can depend on

the timely creation and transmission of control packets. Nodes

which have high buffer utilization because they are handling many

data packets ought not to be at a disadvantage when it comes to

obtaining buffers in which to create control packets. Indeed, it

is just such nodes which are most likely to have the largest

number of protocol-imposed responsibilities, and hence to have

the greatest need for buffers in which to create control

messages. In order to ensure that the flow of control messages

is not slowed by the flow of data packets, each node shouled have

a supply of buffers dedicated solely to the function of creating

control messages.

1.3.4 Buffering Data at the Source Node

In many packet-switching networks, packets received from a

host are buffered at the source node until an end-end

acknowledgment is received. (This is true of single-packet

L• messages in the ARPANET.) An insufficient supply of buffers for

} Fthis purpose will hold the throughput of the locally attached

hosts to an artificially low level. Furthermore, the holding

F I time of a buffer which r ist await an end-end acknowledgment is

very long, relative to the holding time of other buffers. This

Simplies that the number of buffers needed to serve the f!nction

- 27 -
n

• •• • 5 • - --'"-' ,. -""...• -.. .- - - -....

Report No. 4473 Bolt Beranek and Newman Inc.

might be quite large, if an adequate level of throughput is to be

maintained. A basic principle of congestion control in packet

switching networks is that packets which are already in the

network should not be unduly interfered with by packets which are

entering the network. The buffer management scheme we have been

outlining applies this principle by dedicating pools of buffers

to each output device and to the various protocol functions.

That is, the scheme ensures that local inputs cannot hog the

buffer space at a rode, which would result in degrading the flow

of traffic through the node. There is a question, however, as to

whether there should be a pool of buffers dedicated to buffering

input packets at the source node, or whether this function should

compete with other functions for a sharable buffer pool. Since

we have already assigned dedicated buffer pools to those other

functions that need them, the only possible bad result of not

dedicating a pool of buffers for source buffering of local inputs

would be that these other functions would be able to hold down

the throughput due to local hosts, by taking most of the

buffering for themselves. It is sometimes thought that this is

actually a good feature. That is, if the node is so heavily

loaded with transit traffic and with traffic destined for output

to local hosts, perhaps it is good to reduce the amount of buffer

space available for source buffering. After all, -when the

network is heavily loaded, one does want to reduce the input

rate, and reducing the buffer space available for source

- 28 -

Report No. 4473 Bolt Beranek and Newman Inc.

U1
buffering of input will have this effect. This argument,

however, ignores fairness considerations. In the ARPANET, for

examp'.e, tnere are a few nodes which., because they are on the

major cross-country paths, have a much greater load of transit

traffic than does the vast majority of nodes. However, these

nodes which are heavily loaded with transit traffic also have

local hosts and TIPs. The users of these local hosts and TIPs

have a right to the same service as is given to users whose local

IMPs do not have a heavy load of transit traffic, if the heavy

load of transit traffic at these nodes is allowed to get so much

buffer space that the throughput obtainable by the local users is

degraded, then users at these nodes are at a disadvantage with

respect to users at other nodes. This is hardly fair. If the

transit load at some node is "too heavy," then all users which

are sending traffic through that node should be forced to reduce

their input rate, not just the users who happen to be locally

attached to that node. Of course, this effect cannot be achieved

merely by buffer management. It requires a more general

congestion control scheme. Our present point though is that

L. since a heavy transit load should not be permitted by itself (in

j the absence of instructions from a congestion control scheme) to

degrade the throughput of local users, a non-sharable pool of

L buffers should be dedicated to the function of buffering local

input while awaiting end-end acknowledgments. Of course, as long

Sas the transit traffic at some node must compete with the input

Jr -29-

;•---.

Report No. 4473 Bolt Beranek and Newman Inc.

traffic at that node for some resource (even if only the

processor), there will always be a certain amouvt of "unfair"

interference. A good buffer management scheme can limit, but not

eliminate, the effect.

It is important to note that this point can be obscured by

certain assumptions of homogeneity which it is often convenient

to make when analyzing or simulating a buffer management system.

When trying to perform such analysis, it is often convenient to

create a network model in which the ratio of transit traffic to

input traffic is the same at all nodes. Once one has made that

assumption, it is clear that the question of fairness will rnot

arise, since all nodes will be equally loaded, and input at all

nodes will be equally constrained. Therefore, if one has made

that assumption, it may seem reasonable to design a buffer

management scheme which allows transit traffic to lock out

locally input traffic entirely. Assumptions of homogeneity beg

the question of fairness, and in doing so lead to congestion

control or buffer management schemes which are seriously

deficient.

1.4 Buffer Management with a Short-age of Buffers (ARFANE)

We have so far been discussing the issues that arise in the

design of a buffer management scheme for a node which has ample

buffer space. We have argued that good buffer management is

41

S..- 3..0

Report No. 4473 Bolt Beranek and Newman Inc.

important for good network performance, no matter how many

buffers exist in a node. Our basic approach has been to dedicate

i enough buffers to e~eh function which requires them so that all

such functions can be performed at full speed, with the minimum

] famount of interference from other functions. The assumption that

there is an "ample" supply of buffer space is just the assumption1
that there exist enough buffers to do this. Any excess amount of

i buffers should be sharable among several functions, and should be

used to smooth the effects of stochastic peak loads or processor

latency.

§1 We turn now to the issues that must be addressed when

designing a buffer management scheme for a node which does not

* 1 have ample buffer space. Our main interest will be buffer

management in the 316/516 IMP, which is severely memory-limited.

However, our discussion will also have application to the design

of a buffer management scheme for new networks which are not

4• expected to be memory-limited. It is often thought that networks

j t~ designed with present technology will always have ample buffer

I space, since memory is now one of the cheapest components of a

computer. This is somewhat of an oversimplification, though.

U However cheap memory is, it is always cheaper to have leas. We

would not expect nodes to be designed with arbitrarily large

U amounts of buffer space. Rather, the amount of memory configured

f into a node will, generally be determined by making a sizing

I
Eif

-4 -31-

Report No. 4473 Bolt Beranek and Newman Inc.

decision based both on economics and oii the design objectives of

the node. Yet at the present state of the art, making such

sizing decisions is more of an art than a science, and such

decisions can easily be wrong. Furthermore, future

re-configurations of the network, e.g., adding long-delay or

higher speed lines, can invalidate the original sizing decisions.

Yet the addressing, mapping, or bus structure of the computer may

make it difficult or impossible to freely add additional memory

to the initial configuration. It is never good to assume, in

network design, that buffer space will always be ample throughout

the life of the network. For these reasons, our discussion of

buffer management in the ARPANET should have wider application.

In the ARPANET, each Honeywell 316/516 IMP has between 30

and 35 buffers, depending on the configuration of the node and

the presence or absence of various optional software packages

(which, when present, reside in an area of memory otherwise

devoted to buffer space). This is nowhere near the amount of

buffers needed to ensure that all processes requiring buffers can

run at full speed. A sensible approach in such a case is to

dedicate to each process enough buffers to allow the process to

run at only a fraction of full speed, while making the additional

buffers sharable. However, unless there are enough sharable

buffers to enable some of the processes to sometimes run at full

speed, the scheme will prevent any process from ever running at

- 32 -

Report No. 4473 Bolt Beranek and Newman Inc.

ii full speed, even when there are a suff.cient number of idle

buffers. This would be a very undesirable situation. With a

severely memory-limited node, as in the ARPANET, it may be

necessary to dedicate to a process only the minimum number of

-- •buffers required to ensure that the process can run at all (i.e.,

to prevent a deadlock situation in which the process is

completely locked out). This means that much of the ability of

the buffer management scheme to protect one process from undue

interference by another is lost. The price for retaining that

ability would be to guarantee slow performance by some of the

processes, even while resources (buffers) lie idle. Such a price

may be too high to pay.

To put this point another way, we must worry not only about

under-control of the buffer space, but also about over-control.

If buffer space is under-controlled, one process can hog the

buffers, preventing other processes from getting their fair

share. If buffer space is over-controlled, then a process may be

limited to a particular proportion of the buffer space, even if

granting it a larger proportion in some particular situation may

be the best strategy from the point of view of overall network

IL performance. With ample buffer space, over-control is not

generally a problem, since every process can get as many buffers

as it needs. When buffer space is scarce, however, strict and

inflexible limitations on the amount of buffer space that can be

-33-

Report No. 4473 Bolt Beranek and Newman Inc.

under the control of a particular process may result in no

process ever being able to get enough buffers to perform well. A

F loosening of the controls may be necessary in such cases. As we

shall see, the current ARPANET buffer management scheme suffers

from over-control in some instances.

In the ARPANET, the situation is even worse. There are not

enough buffers available to dedicate even the minimum amount to

certain processes. For example, one process which requires

buffers is the process governing output to a host, of which there

may be four attached to each node. An ARPANET message may be up

to 8 packets long (i.e., may occupy up to 8 buffers). Before any

message can be delivered to a host, all eight packets must be

present, so that the message can be "reassembled." There is no

point to dedicating fewer than 8 buffers to each host, since that

would not guarantee that enough buffer space would always be

available to deliver a message to the host. On the other hand,

one cannot dedicate 8 buffers to each of four hosts, since that

would leave no buffers for any other function. A similar problem

arises with respect to packets which must be buffered at the

source node awaiting end-end acknowledgments (RFNMs). There can

be as many as 8 such packets per "connection,t where two packets

are considered to be on the same connection if they have the same

source host, the same destination host, and the same priority.

With four source hosts per node, each of which can be

- 34 -

Report No. 4473 Bolt Beranek and Newman Inc.

communicating with an arbitrary number of destitation hosts, the

number of buffers required to guarantee maximum throughput is

more buffers than exist iii the entire node. However, it is still

the case that there are too few buffers to enable a buffer

management scheme to ensure fairness to both host input and host

output functions. This means, of course, that improving the

buffer management scheme can increase the fairness, but not

optimize it.

The way the ARPANET deals with this problem is simply to

lump together all host input and output functions and dedicate a

single pool of buffers to the combined Get of functions. This

pool is known as the "Reassembly" pool, and its size varies from

about 18 to 22 buffers, depending on an IMP's configuration.

(The term "reassembly" is very misleading in this context, since

reassembly of packets into messages is only one of many functions

which must obtain buffers from the reassembly pool.) This

approach recognizes that there is simply an insufficient amount

of buffering to enable separate pools of buffers to be dedicated

to the separate hosts, or even to enable separate pools of

: buffers to be dedicated separately to input and output functions,

without paying the overly high price of ensuring poor performance

by some processes even under conditions of low buffer

utilization. The main disadvantage of the approach is that it

robs the buffer management scheme of its ability to ensure

-35-

- -h

Report No. 4473 Bolt Berarek and Newman Inc.

fairness among the various competing functions that are lumped

together. However, that is really just the result of having an

insufficient supply of buffers, and we do not see any way of

improving the situation simply by altering the buffer management

scheme. Attempting to maximize fairness under these conditions

requires a strategy other than partitioning the buffer space.

The scheme in the ARPANET, though, does make an attempt to

separate host-related functions from functions related solely to

the operation of -ýa inter-IMP trunks. Failure to separate

host-related functions from each other may cause different

host-related functions to interfere with each other. Failure to

separate host-related functions from operation of the inter-IMP

trunks would enable host-related functions to interfere with the

node's store-and-forward ability, wnich could be even worse,

since that could make the network more prone to congestion. As

we shall see, however, the ARPANET's buffer management scheme is

not entirely auccessful in preventing interference between

store-and-forward functions and host-related functions.

Even though fairness between host input and host output

functions cannot be guaranteed in the ARPANET simply by

partitioning the buffer space, there are other sorts of

"procedures which a buffer management scheme can bring to bear to

help bring about (if not to guarantee) fairness. The present

buffer management scheme makes no real attempt to "prioritize"

- 36 -

L1 ReotN.47 Bolt Beranek and Newman Inc.

the input and output functions. That is, if at some given time,

buffers are needed for both input and output, the buffers will be

assigned in the order in which they are requested. Because of

the software architecture of the IMP, this appears to give an

K advantage to host input. The request for a buffer to hold aSL

packet received from a local host is made by the high-priority

routine which services the host-IMP interface. The request for a

buffer to hold a packet for output to a local host is made either

by the TASK process or by one of the background processes, which

run at lower priority levels. Furthermore, requests for output

buffers, if not served the first time they are made (because of

uriavailability of buffers), are put on a queue which is served in

round-robin fashion at the lowest priority level. Any number of

requests for host input buffers can be served between the time a

request for a host output buffer is first queued and the time it

is finally served. This seems to violate the principle of

congestion control which states that output-related functions

should be favored over input-related functions. It would not

seem to be a difficult matter for requests for buffer space to be

Drioritized or re-ordered so that buffers are never provided for

input while there are outstanding requests for output buffers.

(Note that this issue of re-orderlng the requests would not arise

if there were ample buffer space, since in that case, all
Ul

functions could be guaranteed sufficient buffering, regardless of

the order in which1 requests were made.)

37

B•teodr n""•

Report No. 4473 Bolt Beranek and Newman Inc.

This principle, however, would have to be applied with some

4 care. In the ARPANET, a request for output buffer space may be

either a request for one buffer (for single packet messages) or a L

request for eight buffers (for multi-packet messages). If a

source node has requested a single-packet allocate for some

packet from some destination node, it must buffer the packet

until the output buffer space is made available. Meanwhile,

other packets from the same source host may still be entering the

network. On the other hand, if a source node is waiting for a

multi-packet allocate, it does not buffer the multi-packet mesage

while waiting. Rather, it stops all input from the source host

until the output buffers are allocated. That is, if a

single-packet request remains unserved, buffer space is used as

the source node, while input at the source node continues

unabated. If a multi-packet request remains unserved, not only

is no buffer space wasted at the source node, but input from the

source host is stopped. The congestion control principle that

output should be favored over input is reasonable because

"output" means that resources already in use will be freed, while

"input" means that resources currently free will be put into use.

Competition between a host input packet and an unserved single

packet request is clearly competition between input and output.

However, competition between host input and an unserved

multi-packet request is more like competition between input at

one IMP and input at another. Heiice, prioritization or

-38 -

F7i Report No. 4473 Bolt Beranek and Newman Inc.
p

S[re-ordering of requestA for buffers need only be done in the

former case. Even there, care must be taken to ensure that a

large flow of single packet messages to the hcsts at one IMP does

not prevent those hosts from ever sending any inputs of their own

into the network. While output should be favored over input,

I output should not be able to lock out input. After all, output

at one IMP is input at another. If output is too much favored

over input, the result is that input at one IMP is favored over

input at another IMP. Therefore, it is possible that, in the

absence of a general flow control procedure, which would

explicitly match IMP-IMP flows to the amount of resources

available, prioritization of buffer requests could do as much

harm as good. A full investigation of the issues relevant to

end-end flow control in the ARPANET is not within the scope of

the present contract, however.

The 316/516 IMP does not have enough buffer space to ensure

transmission over the inter-IMP trunks at the full rate of 50

kbps. Only the minimum number of buffers necessary to prevent a

I
fe trunk from being locked out is dedicated to each trunk. This

minimum number, of course, is one. There is also a maximum

Snumber of buffers which can ever be under the control of the

combined trunk output processes. This number is either 10, 12,

12 or 14, depending on whether the IMP has 2, 3, or 4 trunks.

SFurthermore, there is also a minimum nunter of buffers which are

In

Report No. 44 7 3 Bolt Beranek and Newman Inc,

av.ailable for trunk output, but unavailable for host-related

functions. This number (which includes the single buffer

dedicated to each output trunk) is either 6, 9, or 12, depending

on whether then• IMP has 2, 3, or 4 trunks. (There are certain

exceptions to this rile, such as IMPs which have 16-channel
satellite lines. See chapter 7 of BBN Report No. 4088 for

details. There appears to be no hard and fast rationEle for

having chosen these Darticular numbers., Rather, they just "seem

to work.") These buffers, except for the buffers which are

dedicated to particular trunks: are not, however, dedicated to

trunk output; they are also. available for other -fanctions that we

- will discuss shortly. The small difference between the minimumn

and maximum numbers of buffers available for trunk output (eitner

4, 3, or 2, depending on IMP configuration) form a pool of

buffers which are generally sharable among all the processes in

the IMP, which can get them on a first-come; first-serve hasis.

There is also a maximum number of buffers which can even be

under the control of the process which runs a particular output

trunk. This number is eight (except for satellite lines, for

which the number is sixteen). The number eight does not appear

to have been chosen in order to meet constraints on the buffer

management system. Rather, eight is the number of logical

channels maintained by the IMP-IMP protocol. fhat is, it is the

number of packets which can be in flight simultaneously on an

- 10 -

SReport No. 4473 Bolt Beranek and Newman Inc.

inter-IMP trunk. There is no inherent reason why the maximum

L number of packets under control of an output trunk (i.e. the

Snarber in-flight at some instant plus the number queued at that

instant) should ae the same as the maximum number of packets

which can be in flight simultaneously on that trunk. This

particular cnoite of number appears to have been made primarily

"for ease of programming.

The ARPANET 1MP does contain a pool of buffers dedicated to

the creation of end-end control messages. In keeping with the

principle that, when buffers are in severely short supply, only a

minimum r.imber should be dedicated to any pirticular function,

the size of this pool is one. Of course, an IMP may have more

than one extant end-end control message at a time. When

additional end-end control messages must be created, they are

treated as host-related messages. Tiat is, to create an end-end

control message, a buffer from the pool for host-related

functions must be obtained. This r2striction is apparently due

to the fact that after a control message is created, it L,

treated in some ways as if it were a packet submitted by a host.

That is, after a control message is created, it is placed or. a

queue known as the Reply Queue. Packets are removed from the

Reply Queue by a "Back Host,'" and submitted to the IMP as if they

L came from a real host. A Back Host is a software routine which

runs at the background level of the IMP. Its purpose is to

41 -
U

' -- '2-

Report No. 447 3 Bolt Beranek and Newman Inc.

submit control packets as if they were packets from a real host

(though of course, they are submitted at a point which is later

in tie IMP's logic than the point where a real host would submit

a packet). This fact about the software architecture of the IMP

makes it appropriate to treat the creation of control packets in

a manner analogous to host input. If the submission of control

packets were handled differently from the submission of ordinary

4 host input, then it might not be appropriate to create protocol

messages on the same buffer pool as ordinary host messages, since

. protocol messages are handled very differently and in general

have different constraints. (Of course, one could raise the

further question as to whether the "back host" mechanism is

appropriate for handling control packets. However, this cannot

be considered here.)

We have spoken of the need for having a buffer dedicated to

input from each inter-node trunk, in order to be able to process

certain sorts of control messages which, although occurring

relatively infrequently, need to be processed quickly, with a

high degree of responsiveness (i.e., without having to wait on a

queue). The IMP does indeed dedicate a buffer to each input

trunk. That is, a packet which has just arrived on a certain

trunk will not even be queued for the dispatcher (TASK) if that

would result in there being no buffer at all available to receive

the next input from the trunk. However, these dedicated buffers

- 42 -

Report No. 14473 Bolt Beranek and Newman Inc.

are not_ used for processing those control packet.s which require

high responsiveness. Not only are such buffers not queuea for

processing, but the packets in such buffers are never processed

at all, they are simply discarded. Even if the packet is a line

up/down protocol packet, which is ordinarily processed

immediately by the routine that handles input from the trunks, it

will not be processed if processing it would mean that there is a

period of time when no buffer is available to receive the next

input from that trunk. Not ever the ackno-wledgments which may be

piggybacked in the packet are prn-cessed. Rather, the packet is[simply discarded, and its buffer reused for the next input. The

apparent purpose of this procedure is to ensure that there is

never any period of time when a packet can be lost because there

is no buffer available in which to receive it. However, although

this procedure does help to avoid packet loss, it does this by

deliberately discarding packets. From a performance perspective,

there does not seem to be much difference between losing a packet

and throwing it away. Yn general, it is not sensible to throw

one packet away so that the next will not be lost. Either the

L buffer dedicated to an input trunk should be used to ensure the
4

processing of packets which need high responsiveness (such as
L line up/d.'wn protocol packets, routing updates, and received

I IIMP-IMP acknowledgments), or there should not be any dedicated

input buffers. Currently, the dedicated buffere are wasted. The

L worst thing a buiffer management scheme can dc is to waste

buffers, particularly when buffers are a scarce resource,

L43

-l';- -

.11-
SI

Report No. 4473 Bolt Beranek and Newman Inc.

The IMP does have a small pool of buffers which cannot be

placed under the cointrol of any host-related process or of any

process which regulates output on the inter-IMP trunks. (The

size of this pool is regulated by the parameter FINF, currently

set to 3.) These buffers are available only for the processing

of such high responsiveness packets as routing updates, line

up/down protocol packets, and received IMP-IMP acknowledgments,

and for the creation of such subnetwork control packets (not

end-end control packets) as nulls, routing updates, and line

up/down protocol packets. These buffers are also useful for

mediating processor latency. They are not, however, dedicated to

the individual input trunks. As we have pointed out previously,

it is quite desirable to have such a pool of buffers; this seems

a good feature of the IMP's buffer management system.

in BBN Report No. 4088 we pointed out several bugs in the

!MP's buffer management procedure. One bug was the fact that the

buffers which are dedicated to input from the inter-lMP trunks

are completely wasted. This bug can be fixed either by

refraining from dedicating b',fgers to trunk input, or by

processing the packets in taese buffers if (and only if) they

require high responsiveness. This latter approach w, ould in some

sense be equivalent to increasing tl'e value of MINF to three plus

the number of trunks, except that it would also ensure some

degree of fairness among the input trunks with respect to their

- 44 -

Report No. 4473 Bolt Berane& and Newman Inc.

Ui ability to obtain buffers from the MINF pool. As we have already

discussed, the correct way to fix the bug may depend on whether

{ the IMP is short on buffers or short on CPU cycles. Some mixture

of the two approaches may be needed, since in practice the IMPs

-- L are sometimes short of buffer space and sometimes short of CPU

I cycles. It must also be pointed out that processing of received

acknowledgments from a particular input trunk may also be

important if the corresponding output trunk has most of its

logical channels in use, even if there are plenty of free

buffers. After all, processing of received acknowledgments not

only frees buffers, but also frees logical channels, and a

shortage of unused logical channels can have the same effect in

degrading performance as a shortage of buffers. In order to pick

the strategy which will have the best effect on network

performance, we will need to design a method df determining in

I i real time which resource is scarcest in the IMP at some

particular moment.

1 We also pointed out several other bugs in BBN Report No.

4088. These bugs all have a common source, namely the fact that

when a buffer is moved from a source process to a destination

process, the buffer management scheme takes no notice of the

source process. In particular, a buffer may be rejected even if

it cannot be freed. This not only leads to the bugs we described

; [in our previous report, but also to the following sort of bug.

F1
45-

N.

Report No. 4473 Bolt Beranek and Newman Inc.

Suppose an IMP has three trunks, and that it has a maximum of 12

buffers which can be under the control of the process which

regulates output to the trunks. Suppose that there are 8 buffers

queued for output to trunk 1, and 3 to trunk 2, while there is

one buffer which has already been transmitted on trunk 3, but

which is presently awaiting acknowledgment. Suppose also that a

packet received from a local host is now ready for transmission

to its destination, and that it is routed out trunk 3. The IMP

will not permit this packet to be transmitted, since that would

place a 13th buffer under control of the trunk output routines.

Thus the buffer will be rejected, even through the trunk is idle,

and the other resources needed to transmit the packet (e.g.,

logical channels) are freely available. Furthermore, the

rejected buffer will not be freed. Refusing the buffer simply

delays transmission of the packet without resulting in the

freeing of any resource. Thus it has no salutary effect on

network performance, and is in fact counter-productive. This is

an example of over-control in the buffer management scheme; a

buffer is prevented from moving, even though considerations of

general network performance would dictate that it be passed to

the destination process immediately. This bug, as well as

others we have discussed, would be eliminated if the IMP took

account of the buffer's source process as well as its destination

process. Then the IMP could adopt a policy of never refusing a

buffer for considerations of buffer management unless doing so

would result in the buffer's being freed.

- 46 -

_ !I

Report No. 4473 Bolt BeraneP and Newman Inc.

Even if the ARPANET's buffer management scheme were modified

to take account of the criticisms we have been making, there

[would still be a major problem with it. The problem is that in

the competition for buffers to be used to transmit packets to a

I. neighboring IMP, packets input from local hosts &r, favored over

1. packets arriving from neighborikg IMPs, thereby violating an

important principle of congestion control. Not only can host

access lines be of higher speed3 than inter-IMP trunks, but the

1822 protocol, which governs host-IMP access, does not allow the

IMP to drop a packet it has received. The IMP-IMP protocol, on

the other hand, does allow a receiving IMP to drop a packet. We

have ,lready pointed out the way in which this can cause a buffer

management scheme to favor the packets from the local hosts.

Since it is not feasible to modify the 1822 protocol, some other

means of eliminating or at least reducing this favoritism must be

developed.

One way of reducing this favoritism would be to define a

pool of buffers reserved exclusively for "transit packets", i.e.

packets whose origin and destination are both remote. No such

buffer pool exists in the ARPANET at present. The current

store-and-forward pool can be completely filled with locally

originating packets. Although a locally originating packet

requires a buffer from reassembly space when it first enters the

IMP, it is moved into store-and-forward space as soon as it is

-47-

Report No. 4473 Bolt Beranek and Newman Inc.

queued to an output trunk. Since locally originating packets

cannot be discarded, and hence should never be refused by the

buffer management scheme after they are originally received, this

division of the buffer pool does not prevent host packets from

locking out transit packets entirely. It does prevent all the

buffers in the IMP from being devoted to host-related functions,

which is very important if the IMP is to continue to function as

a store-and-forward node even while handling a large amount of

host traffic. Note, however, that a pool dedicated to transit

packets would have the same effect. Furthermore, it would have

the additional salutary effect of ensuring a supply of buffers

for transit packets.

We recommend therefore the elimination of the

store-and-forward pool, and the creation of a transit pool. The

transit pool would consist of a minimum number of buffers which

would be dedicated to packets with renote origins and remote

destinations. Locally originating packets would never be placed

in the transit pool, but would remain in the Reassembly pool

(which we suggest renaming the "end-end" pool), even while queued

for transmission out an inter-IMP trunk.

It is also desirable to ensure that a certain number of

transit packets may always be queued simultaneously to a given

output trunk. Although the presence of the transit pool prevents

transit packets from heing locked out entirely, it does not

-48

LReport N~o. 4473 Bolt Beranek and Newman Inc.

U prevent them from being locked out on some particular output

trunk. However, since every packet queued for an output trunk

must be assigned to a logical channel, this can be prevented by

saving a certain number of logical channels on each trunk for

L transit packets only. This may require that a locally

I originating packet with a remote destination sometimes be

refused, even though the trunk is idle and the refused buffer

cannot be freed. However, the reason for refusing in this case

is not buffer management, but management of logical channels.

V• Refusing a host packet (destined to a remote destination) for

reasons of logical channel management will result in keeping free

a logical channel that would otherwise be occupied. So even

though no buffer is freed, the packet can still be refused

without violating any principles of resource management.

1.5 Detailed Specification of an Improved Buffer Management

System for the ARPANET

In this section, an improved buffer management scheme is

specified. Its purpose is tc resolve the problems with the

current ARPANET buffer management scheme that have been discussed

in previous sections. Only those aspects of the buffer

management scheme which will actually change are described below;

aspects of the scheme which are not explicitly discussed will

2 Ifremain as they are now.

1 K - 49-

Report No. 4473 Bolt Beranek and Newman Inc.

1) After receiving a modem input, check to see if another

buffer can be put up for the next input. If not, then:

a) If the packet just received contains acknowledgments,

process them. This processing is done at modem

level. Then give the buffer back to modem input.

b) If the packet just received is a line up/down

protocol packet, process it. This processing is done

at modem level. Ther, give the buffer back to modem

input.

c) If the packet just received is a routing update,

perform the modem-level processing and queue it for

the routing process at TASK level. The next time a

buffer is freed, give it to moaem input.

d) If the buffer contains anything else, just discard

it, and re-use the buffer for the next input.

This scheme is an improvement over the present one, in

i tnat it does not throw away a packet without even looking at it,

However, it does prevent all buffers from going on the TASK

queue, which could cause failure to process line up/down packets

or routing updates. Strictly speaking, we should rot proess the

acknowledcgments if the TASK queue is very long, since in that

case we want to -ave processing time. However, in that case

5I - 50 -

Report No. 4473 Bolt Beranek and Newman Inc.

there probably are not many acknowledgments to prczess anyway

(since in a node with few buffers, it' many packets are on the

TASK queue, there cannot be many packets in flight), and it might

take just as long to decide not to process the acks as it would

to go ahead and to process them.

2) We should save n logical channels on each output trunk

for transit packets (packets wY.,h remote origins AND remote

destinations). That is, locally originating packets would be

allowed to use only 8-n (or on satellite lines, 16-n) channels on

each line. The value of n should be an easily settable

parameter, so that experiments can be performed to determine its

best value, Hopefully, it will be possible to find a value that

will no. place a restriction on local throughput. (E.g., it is

possible that a local host can obtain its maximum throughput tyI filling only, say, 6 logical channelp, so that when it fills all

8, it does not obtain any additional throughput.) If such a

value cannot be found, then a restriction on local throughput may

be the price to be paid for additional .airness and congestion

avoidance.

3) The transit and end-end buffer pools will replace the

store-forward and reassembly pools, respectively. Decisions as

to whether TASK can accept a packet will be based on the

following quantities:

-- 1

Report No. 4473 Bolt Beratek and Newman Inc.

m -- the number of modems

B -- the number of buffers in the node

TMIN -- the minimum number of buffers in the

transit pool

TMAX -- the maximum number of buffers in the

transit pool

MAXE B - TMIN, the maximum number of buffers in

the end-end pool

We do not propose at present to change the internal

structure of the end-end (reassembly) pool; everything there

shall stay the same. When TASK gets a packet which is already

counted in the end-end pool, and which needs to be routed to a

remote destination, the only check which TASK makes is the

logical channel ttest (subject to point 2 above), The packet will

remain in the end-end pool. When the packet is flushed, of

course, the end-end count must be decremented.

When TASK gets a traosit packet to go out a particular

modem, it makes the following tests:

a) Are there any transit packets already in logical

channel slots for that modem? If not, the packet is

accepted. The count of transit packets is

incremented. Note that this scheme ensures that

there are enough buffers to send at least one transit

-52-

Report No. 4473 Bolt Beranek and Newman Inc.

F packet out each line. However, all buffers occupied

by transit packets are counted as transit buffers.

This eliminates the peculiarity of the present scheme

wherein the first buffer on each modem is not

counted. (See chapter 7 of BBN Report No. 4088 for

details of this peculiarity.) As a result, the

counts will not have to be adjusted when buffers are

moved to the re-route queue.

b) If there is at least one transit packet alreadl

occupying a logical channel on that modem, then the

packet is accepted only if accepting it would n'.t

increase the transit count above TMAX-q, wILhcre q is

the number of trunKs for which no logical channel is

occupied by a transit packet.

c) Of course, both the above tests are subject to the

ordinary logical channel test; if there are no

channels available, then no packet can be accepted.

Initially we will set TMAX to 6 + 2m in IMPs which have no

16-channel line, and to 15 + 2m in IMPs which do have a

16-channel line. This corresponds to the current setting of

SFMAX (defined in BBN Report C;. 4088). Currently, SFMAX is the

maximum number of transit packets which can be in a node

simultaneously. In the new scheme, the maximum number would be

.. 53-

Report No. 4473 Bolt Beranek and Newman Inc.

_ ThAX, i.e., the same. it is more difficult to come up with an

Soptimal ,etting for TMIN, si ce any non-zero value will decrease

the maximum number of locally originating packets which can be

simultan~ously buffered in an IMP. (The new scheme will allow

only MAXE such buffers; the old scheme does NOT have this

restriction.) The initial setting of TMIN will be 2m, but this

will have to be an easily modifiable parameter. Optimal values

of these parameters will have to be determined empirically.

i

.- 4

- 4

Report No. 4473 Bolt Beranek and Newman Inc.

i; 2. LOGICAL ADDRESSING

2.1 Introduction

In the current APPANET, in order for a user to transmit data

to a particular host, he must know the physical address of the

host. That is, he must know which node the host is connected to,

and he must know which port on that note is used to connect that

host. Furthermore, this is the only means a user has of

identifying a host. In many respects, the nhysical address of a

host computer can be compared to a person's telephone number.

The problems inherent to physical acdressing in a computer

network are similar to those we would experience in ordinary

interpersonal communication if a person's telephone number were

the only means we had of identifying him. Dialing a particular

telephone nun.ber allows us to establish a communications channel

to a pa-ticu.ar location. This works well as long as the person

with whom we wish to commurticate remains at that particular

location. When the person changes his location, though, the

phone number becomes virtually useless, and the physical address

of• a host computer becomes equally useless if the cL.mputer's

location within the network changes. In the context of

interpersonal communication, this gives rise to the calling of a

"wrong number". In the context of computer networking, this can

give rise to the more serious phenomenon of mis-delivery of data.

Furthermore, when a computer changes location within a network,

-55-

Report No. 4473 Bolt Beranek and Newman Inc.

it is quite difficult to carry out a procedure which reliably

informs all users of its new physical address. There are

difficulties in identifying all users, difficulties in contacting

them once they are identified, difficulties in mcking sure that

the information receives the proper level of attention once

contact is made, and if all these difficulties are resolved, it

is still difficult to make the necessary changes to computer

software so that the new physical address is actually put into

use.

There is another sort of problem would occur in

interpersonal communication if our only means nf identifying a

person were by his phone number. IL is very common for several

people to share a phone number. If we identified people only by

phone numbers, we could rot distinguish among several people at

the same location. This problem arises in computer networking if

several computers share the same port. There are, in fact,

several reasons why it may be desirable to allow several

computers to share the same port. One reson is simply the need

to get by with a less than optimal amount of equipment, either

due to economics or to shortage. if some administration has two

computers, each of which needs to be on the network only part of'

the day, but which do not need to be on the ne,,work at the same

time, sharing a single port may be the beat solution. The

increasing cost-effectiveness of such devices as port expanders

-56-

I L Report No. 4473 Bolt Beranek and Newman Inc.

• Land local networks may also make it more and more desirable to

have several computers sharing the same port. A related problem

arises if one thinks of a network of computers as consisting of

"logical hosts," rather than physical hosts. Whereas a physical

Shost would be a particular piece of' hardware, a logical host

.would be the instantiation of particular function. Thus a

physical host which supported (for example) time-sharing during

the day and batch processing at night could be regarded as two

logical hosts which share the port on a time-division basis. A

related application is the situation in which the functionality

of two (small) physical hosts is combined into one (Oarger)

physical host, which then can be thought of as consisting of two

logical hosts. It could be very useful to have the flexibility

to move logical hosts freely around the network, perhaps changing

the correspondence between particular logical and physical hosts,

without having to inform all users of the new physical addresses.

Of course, the reasons the.se pro!lems in computer networking

are more serious than the analogous problems in interpersonal

communication i. that telephone n"umbers are not the only, or even

the primary, means we have of identifying other people. We can

identify other people by name, and this greatly facilitates our

ability to get in touch with people even a3 they change location.

It also enables us to specify the individual we wish to talk to,

in the situation where several neople share a telephone. Similar

"-57 -

Report No. 4473 Bolt Beranek and Newman Inc.

advantages would accrue if we could identify computers by name

rather than by physical address. In order to get our data to the

appropriate computer, its physical addross would still have to be

determined. But the user should be able to tell the network the

name of the appropriate computer (perhaps a logical rather than a

physical host), and let the network itself map the name to its

physical address. For speed and reliability, the mapping

function should be accomplished automatically (i.e., by software)

with minimal need for human intervention. Schemes to accomplish

this are known as logical addressing schemes, and the name of a

computer is usually referred to as its "logical address" (though

in fact, logical addresses are not addresses at all, since they,

like names, are independent of location).

A good logical addressing scheme should allow more

flexibility than may be already apparent. We have spoken of the

need to be able to identify a computer in a way which is

independent of location, and of the need to be able to map

several distinct names onto a single physical address. There is

also a need to be able to map a single name onto several physical

addresses. To carry out the analogy with interpersonal

communication, this would correspond to •- case where a single

person has several telephones, with different phone numbers,

possibly at different locations. This adds reliability to the

communications process, since if the person cannot be reached at

- 58 -

Report No. 4473 Bolt Beranek and Newman Inc.

IL one phone n,,nber, perhaps he can be reached at another. If he

can be reached at each of the numbers, he now can handle several

. conversations simultaneously, i.e., he has increased throughput.

In computer networking, this sort of application is known as

L. "multi-homing." In multi-homing, a aingle computer connects to

the network through several ports, usually (though not

necessarily) at several different network nodes. This allows the

computer to remain on the network even though one of its access

lines, ports, or home nodes fails, thereby increasing

reliability. In the case where it is more economical (or

otherwise more practical) to obtain several low-speed access

lines than to obtain a single high speed line, multi-homing can

also allow a given'host computer to obtain higher throughput at

less cost.

Another sort of application which requires a single name to

map into several physical addresses can be compared to a business

which has several branch offices, each with a different phone

number, but whose customers do not care which branch office they

reach. This can be useful in certain sorts of internetting
V

applications. Suppose, for example, that an ARPANET user wants

to send a packet to SATNET, but that there are several equally

good gateways between the two networks. It may be convenient for

the user to simply specify a name like "Gateway-to-SATNET" and

let the network choose which of the several gateways (i.e.,

-59-

Report No. 4473 Bolt Beranek and Newman Inc.

physical addresses) to use. A related sort of possible

application has to do with distributed processing and resource

sharing. If some particular resource is available at any of

several locations around the network, it may be desirable to

allow the user to specify the resource by name, and allow the

network to map that name onto some particular physical address

according to criteria that the user need not be aware of. (Such

a service was formerly offered by the ARPANET TIPs. By typing

@N, a user would be connected to a "Resource-Sharing Executive"

on one of several network TENEX systems. The user, however,

would have no way of knowing which system he was actually on.)

2.2 Translating Logical to Physical Addresses

2.2.1 Translation Locus

It should be obvious that any implementation of logical

addressing would require the network to maintain a translation

table. The user would specify a logical address, and the network

would use this logical address as an index into the translation

table in order to obtain the physical address (or list of

physical addresses) to which it corresponds. The network would

use the physical address internally to determine the routing of

user messages. The need to maintain a translation table gives

rise to a multitude of design issues. The first q.- ion that

needs to be answered i5, where should the translation table be

-60-

L
Report No. 4473 Bolt Beranek and Newman Inc.L
located? Should every node maintain a copy of the whole

translation table, or should there be just a few copies of the

ittable scattered around the network in strategic locations? If

there are only a few copies scattered around the network, then

nodes which do not contain the tables would have to query the

nodes that do in order to perform the translation function. This

is less efficient (both in terms of overhead and response time)

than placing the table in every node. Considerations of

reliability and survivability also favor placing the table in

every node. This eliminates the possibility of finding that, due

to network partition, all copies of the translation table are

inaccessible. It eliminates the need to have some nodes serving

as hot or cold standby for the nodes which do have the tables.

This is an important advantage, since the protocols needed to

implement "standby" tend to be slow and cumbersome, or else

unreliable. Furthermore, if all nodes maintain identical copies

of the translation table, there is no need to go through any

special initialization procedure for creating the table when a

node first comes up. Typically, a node which is just coming up

has been reloaded from a neighboring node. If all nodes have an

identical copy of the table, a node coming up can simply have its

t&ble reloaded from its neighbor, i.e., can copy its rnighbor's

table. (Under certain unusual conditions this may give rise to a

race condition, but as we shall see later, it is a race that can

be easily remedied and one that will not have any bad effect

other than to slow the reload process.)

-61

Report No. 4473 Bolt Beranek and Newman Inc.

There is, however, a possible disadvantage to having the

tables in every node. That is simply the need to have enough

memory in every node to hold the table. In certain networks,

particularly commercial ones, the network nodes may be of widely

varying sizes and capabilities, and the smaller, nodes just may

not be able to hold the complete translation table. Such

networks would necessarily have a hierarchical structure

(probably with some form of hie.archical routing), and a node

would not be able to hold a translation table unless it were at

or above a ccrtain level in the hierarchy. However, this

situation does not apply either to AUTODIN II or to the ARPANET,

the two networks with which we are presently concerned. We will

discuss later some of the issues having to do with table size,

and we shall see that the translation table can be coded in two

or three words per logical address. This should not offer any

problem in the AUTODIN II environment. In the ARPANET, there is

more of a problem. Currently the IMPs are restricted to 16K of

memory, and there is not enough room in any IMP for the

translation tables, or even for the code needed to perform the

translation, When the 32K C30 IMPs become available, however,

there will be sufficient room to have a complete table in each

one. (These claims are based on the assumption that there will

be fewer than 500 logical addresses in each network. If this

assumption is wrong, the claims may need to be re-evaluated.

Note that the size of the table will be determined by the number

- 62 -

L Report No. 4473 Bolt Beranek and Newman Inc.

of logical addresses, which may be larger than the number of'U
hosts.) As long as some 16K IMPs remain, however, there will be

U Lsome IMPs that cannot hold the translation tables. That does not

necessarily violate our dictum that every node contain a copy of

the translation table, though. Strictly speaking, only those

nodes which will ever need to translate a logical address to a

physical address will need to have a copy of the translation

table. Whither that is all nodes or only a subset of the nodes

depends on the translation methodology that we adopt. We have a

choice between requiring translation to be done only at the

source node, or requiring it to be done also at tandem nodes. In

the former case, when the user presents some data to the network

and specifies its destination with a logical address, the source

node looks in the translation table, gets the physical address,

places the physical address in the packet header, and sends the

packet on its way. Tandem nodes do not look at the destination

logical address at all, but only at the physical address. In the

other case, each tandem node looks at the logical address, does

its own translation to physical address, and routes the packet on

that basis. The packet header would not even have to contain the

physical address. If we do source translation only, the caly

nodes which need to contain translation tables are those that

connect to hosts which use logical addressing. This is

attractive for the ARPANET, since we could declare that. any host

which wants to use logical addressing would have to access the

-63-

Report No. 4473 Bolt Beranek and Newman Inc.

I network through a 32K r30 IMP; hosts accessing the network

through 16K IMPs would then be prohibited from using logical
addressing. Therefore, we must look at the advantages of source

node vs. tandem node translation.

2.2.2 Translation Methodology

Clearly, in the case where a logical address maps to a

unique physical address, source node translation is superior to

tandem node translation. As long as there is only one possible

physical address for that logical address, all n~odes will prLuuoa

exactly the same mapping. There is thus no advantagL Lo

performing the mapping several times, and the scheme which does

it only once is more efficient. There is, however, one exception

to this. When the translation tables need to be updated, we

cannot expect all copies to be updated simultaneously. There

will necessarily be some short interval of time when not all of

the copies of the table around the network are identical, and

during this interval, tandem node translation may yield different

resvlts than source node translation. It will certainly be

necessary to design some mechanism to deal with this problem, and

we shall propose one shortly. Tandem node translation, however,

is not the rignt solution to this problem. During the transient

period, some copies of the table will be right (up to date) and

some wrong (out of date). But the copies at the tandem nodes

wil) be no more likely to be right than the copy at the source

- 64 -

tIL

Report No. 4473 Bolt Beranek and New, nan inc.

node, so tandem node translation would be as likely to amplify

the problem as to reduce it. The solution to this problem lies

elsewhere.

In the case where a logical address maps to several physical

addresses (multi.-homing), tandem node translation might well give

different results than source node translation. However, we must

now distinguish between virtual circuit and datagram traffic. If

virtual circuit traffic is logically addressed, all translati'r

must be performed at the source node. In fact, Lhe translation

must be performed only once, at connection set-up time. This is

the only way to ensure that all traffic on a given circuit is

sent to the same physical address, which in turn is the only way

to provide the sequencing and duplicate detection that is the

raison d'e.re of virtual circuit traffic. (Additional issues

having to do with logically addressed virtual circuit traffic

will be discussed later.) Thus the only possible advantage of

tandem node translation would have to do with datagram traffic

which is destined to a 'multi-homed logical address. To

understand the differences, though, between source node and

tandem node translation, we must first discuss the criteria which

a node uses to pick one physical address out of the several that

are a,,ailable. (Even though a host is multi-hcmed, we would want

to send each packet for it 'o only one of its physical addresses;

some criterion for choosing the proper ore in each particular

Report No. 4473 Bolt Beranek and Newman Inc.

case must therefore be available.) Several possible criteria

come readily to mind:

a) When ,..ere are several physical addresses corresponding

to a given logical address, it may be desirable to send packets

to the physical address which is closest to the source node,

according to some metric of distance. For example, if we are

interested in minimizing delay, we may want to choose the

physical address to which the delay from the source is least. If

SPF routing is used, this information is readily available. If

we are interested in minimizing the case of network resources by

a particular packet (i.e., in maximizing throughput while still

using orly a single path), we may want to choose the physical

address which is the least number of hops from the source. (For

these purposes, ties can be broken arbitrarily.) Again, this

information can be made readily available by the SPF routing

algorithm (although it is not readily available from the

ARPANET's particular implementation of that algorithm, since a

table of hop-counts is not saved). If either of these criteria

is used, tandem node translation can result in better route

selection for the logically addressed datagram. If delay changes

or topology changes take place while a packet is in transit, it

* may happen that the "closest" physical address to some tandem

node is different from the physical address that was closest to

the source node when the panket first entered the network. It is

- 66 -

Report No. 4473 Bolt Beranek and Newman Inc.

easy to prove that, if SPF routing is used, this cannot result in

looping, except as a transient phenomenon while a routing update

is travErsing the network. That is no particular disadvantage,

since a packet may be subject to that sort of transient looping

even when its destination physical address does not change.

However, it is not clear that tandem node translation provides

much of an advantage either, especially when one takes into

account the additional overhead of doing the re-translation at

each tandem node. Doing translation at tandem nodes will

necessarily increase the nodal delay and decrease the nodal

throughput. These negative effects may outweigh the positive

effects of improved route selection for those relatively rare

cases in which delay or topology changes si.gnificantly while a

packet is in transit. We must remember that although real

improvements in route selection would only occur rarely (since

delay and topology changes are very infrequent when compared with

* average network tran3it times), re-translation would have to be

done for every logically addressed datagram. Unfortunately, all

these effects are extremely difficult to quantify with any degree

of confidence. Our (somewhat intuitive) conclusion is that,

under the nelection criterion of choosing the closest physical

address, tandem node translation offers at best a small

improvement over source node translation, and at worst a severe

degradation.

-67-

Report No. 4473 Boit Beranek and Newman Inc.

b) It is possible that some multi-homed hosts will want to

establish an inherent ordering to their ports. That is, they may

prefer to receive all their traffic on port A, unless that port

is inaccessible to the source of.L the traff'ic, in which case they

prefer to receive all traffic on port B, unless that pcrt is

inaccessible to the source of the traffic, in which case they

prefer to receive all traffic on port C, etc. This sort of

strategy may be appropriate if certain of the host access lines

are charged according to a volume-based tariff, while others are

not. It may also be appropriate if certain of the access lines

can be used more efficiently (i.e., can be serviced with)ess

host CPU bandwidth) than others. (An example might be a host

which can access the ARPANET through an 1822 line and a VDH line.

It might be desirable to avoid the VDH line, unless absolutely

necessary, since VDH lines tend to be used less efficiently.) In

either case, the idea would be to reduce cost by favoring certain

ports over others, using the more expensive po,.'ts only when

needed fcr purposes of reliability or availability. Thus we may

want the logiual addressing scheme to support an inherent

ordering among the several physical addresses which correspond to

a given logical address. With this scheme, there is no advantage

S jto doing tandem node translation. There will be only one

ordering for the set of physical addresses corresponding to a

logical address, so tandem nodes should always pick the same

physical address as the source node picked, and re-translation

- 68 -

:5J

Report No. 4473 Bol•t Beranek and Newman Inc.

would simply be a waste of resources. There are only two

exceptions to this. The first excerption would arise in the

situation where a parzicular physical address becomes

inaccessible as a packet routed to that address is traversing the

network. However, since t'is can happen no matter what criteria

are used for choosing among the physical addresses, we put it off

for later consideration. The second exception would arise if the

translation tables were being updated while a packet is in

transit. Clearly, some procedure to deal with this case must be

devised, since the update which is taking place may invalidate

the translation which was done at the source. Tandem node

translaticA is not the proper solution, however, since there is

in general no reason to believe that the tandem node is more

up-to-date than the source node. We will return to this issue

when w3 discuss the table updating procedures.

c) Certain multt-homed hosts may have a preference for

receiving certain kinds of traffic over particular ports. Thus a

dual-homed host may consider ont. of its ports more suitable for

receiving batch traffic, and another more suitable for receiving

interactive traffic (perhap- the first port offers a higher speed

but a longer d'L-v than the second). However, if one of the

ports is ina j:,ss.ý_ble from -- particular source node, that node

would send all It.A traffic (both kinds) to the port which remains

accessible, Wito, this criterion, we see once again that tandem

- 69 -

Report No. 4473 Bolt Beranek and Newman Inc.

node translation offers no benefits, since, barring the case of a

port becoming inaccessible while a packet is in transi all

tandem nodes would select the same physical address as the source

node.

d) Some multi-homed hosts may wish to ti y to keep their

several access lines as equally loaded as possible. One possible

way to do this would be to establish an in,:rent ordering to the

port- (as in b, above), but to make the ordering different for

different source nodes (or hosts). Clearly, this schew- requires

source node translation; tandem node translation would only serve

to defeat it. Another possible way to achieve some sort of load

leveling would be for each source node to send traffic to the

various physical addresses on a round-robin basis. This would be

a very crude form of control, but might work reasonably well for

particular traffic patterns. This scheme also requires source

node translation. In fact, tandem node translation could

actually cause packets to loop endlessly.

We see then that none of the suggested selection criteria

give any very large advantage to tandem node translation, and

some of the criteria are actually in conflict with re-translation

at tandem nodes. It thus seems acceptable for the ARPANET to

implement logical addressing only in the 32K nodes, with the

restriction that hosts which use logical addressing must access

the network at such nodes.

- 70 -

Report No. 4473 Bodt Beranek and Newman Inc.

2.3 urganizing the Translation Tables

Another issue having to do with the translation tables is

the way in which the tables should be organized. Clearly we do

not want the entries in the table to be in randcm order,
necessitating a lengthy linear search each time a translation

must be done. Basically. there are two possible ways to order

the table. We can sort the table by logical address, and do a

binary search of the table whenever ue need to do a

logical-to-physical address translation. This is a rather

efficient form of searching, but it causes inefficiencies when

table entries have to be inserted or deleted, since that would

require a potentially time-consuming expansion or compression of

the table. There are, however, ways of reducing the overhead

involved in insertions/deletions. Dcletions could be made

"logically", i.e., by marking an entry deleted, rather ";han

physically compressing the table. New entries could be inserted

into an overflew area, which itself would be searched linearly

whenever a particular logical address could not be found in the

main table. Actual compression/expansion of the main table would

be done only when the overflow area filled. Note, however, that

th:,.s sort of strategy would necessarily complicatz, the search

algorithm, and this might actually do more harm than good,

especially if insertions and deletions are rare events. We shall

see later, when we discuss the conditiuns under which insertions

-71-

JiM

Report No. 4473 Bolt Beranek and Newman Inc.

and deletions are required, that these are indeed rare events.

We conclude tentatively that, if a sorted table with binary

searching is used, the use of an overflow area is probably not

necessary.

The other possibility for organizing the table is to use

hashing. A good hashing algorithm (i.e., one which minimizes

collisions) provides very efficient insertions and very efficient

searches. Deletions are not quite so efficient, but are still

more efficient, in general, than the table compression required

if binary searching is used. However, hashing has certain

inherent probltms which may make it less suitable. Choosing a

hashing algorithm which both minimizes collisions and is

computationally efficient is not a simple matter. One must be

sure that the time needed to perform the hashing is really less

than the average tie needed to find an entry in a sorted table

by means of binary searching; otherwise, ihe efficiency is lost.

Furthermore, the number of collisions generated by a particular

hashing algorithm will depend on exactly which set of logical

addresses are in use. The set of logical addresses in use during

a network's lifetime will be a slowly changing set, and a hashing

algorithm which is excellent at one time may give poor

performance at anothe: . Hashing algorfthms are also subject to

undetected programming bugs in a way in which binary search

algorithms are not. A bug which is inzerted into a hashing

- 72 -

- W

Report No. 4473 Bolt Beranek and Newman Inc.

algorithm, which, for example, causes all entries to hash into

the same bucket, might go undetected for years, although it would

cause a significant performance degradation by reducing the

efficiency of the hashing technique to that of linear searching.

A bug in the binary search algorithm, however, would be more

likely to come to someone's attention. Its probable result would

not be performance degradation, but rather, failure to find

certain entries. This would cause inability to deliver traffic

to certain logical addresses, and this would certainly come to

the users' attention very quickly. These qualitative reasons

would seem to indicate that binary searching is preferable to

hashinig. It would also be useful to do some quantitative

analysis; that may be done at a later stage of our research.

Someone may wonder why we have not considered a much simpler

method of organizing the tables. Logical addresses, after all,

are just numbers (or at least are representable as numbers). If

the set of logical addresses in use at any given time is a

contiguous set of numbers, then the addresses can be used as

indexes directly into a translation table, with no need either

for hashing or for sorting. The problem, of course, lies in the

requirement that the set of logical addresses form a contiguous

set of numbers. Assigning numbers tu hosts contiguously nay not

be a problem in itself, but it does cause a probiam as soon as

some host is removed from the network. Its num.bver (nr numbers,

- 73 ~

Report No. 4473 Bolt Beranek and Newman Inc.

if it has several logical addresses) cannot be left unused, or

the size of the translation table would be determined not by the

number of logical addresses currently in use in the network, but

rather by the number of logical addresses that have ever been in

use in the network, a number which may be much larger, and which

in fact has no bound. Yet it is not acceptable simply to

reassign the same logical addresses as hosts enter or leave the

network. We all have some experience with moving to a new

location, getting a new telephone number, and finding ourselves

frequently getting calls intended for the person who previously

had that number. Such calls may persist for years, especially if

the number previously belonged to a business. Receiving phone

calls or mail intended for someone else who happens to have the

same name as we do is also a familiar occurrence. We would

expect analogous problems if logical addresses are reassigned (at

least, if they are reassigned without some very long waiting

period), especially if the logical address previously belonged to

a large service host. When a user tries to address a host which

is no longer on the network, he should receive some indication of

that fact; he should not have his data mis-delivered to some

other host which has been assigned the same name. Thus it is

preferable to have a logical addressing scheme which does not

depend on the logical addresses forming a contiguous set of

numbers.

- 74 -

Report No. 4473 Bolt Beranek and Newman Inc.

Whatever means of organizing the table is chosen, it may

still be useful to maintain a smaller table for, use as a "cache."

The cache would contain the n most recently -ised logical

addresses (where n is some small number), together with a pointer

to the absolute location of that logical address entry in the

main translation table. When it is necessary to do translation,

the cache would be searched before the main table. The

assumption is that once one packet for a particular logical

address is received from a source host, many more will follow.

Thus it pays to optimize the search for that particular logical

address. Choosing the optimum size for the cache, and the means

of searching it (linear or binary) are issues left for later

resolution. These issues must be dealt with carefully, however;

one would not want to find that searching the cache takes as long

or longer than searching the main table. It is worth emphasizing

th3t the cache should contain a pointer into the main translation

table, rather than a copy of the list of physical addresses

ensoci-ted wl.th a particular logical address. For multi-homed

logical addresses, this is more efficient, since it iivolves less

copying. Also, if there are variables associated with the

physical addreses, this enables unique copies of the variables to

be kert in the main table. (Suppose, for example, that packets

are to be sent on a round-robin basis to the several physical

addresses corresponding to a multi-homed logical address. This

requires a variable to be associated with each piysical address,

- 75 -

-

M

Report No. 4473 Bolt Beranek and Newman Inc.

indicating whether that physical address was the last one to be

sent data. This variable must be kept in thv. main table, not the

cache, since one cannot rely on a particular logical address

always being present in the cache.) This means, of course, that

the cache must be cleared whenever there are insertions or

deletions into the main translation table, but that should not be

very expensive as long as such insertions and deletions are

relatively rare.

2.4 Initializing the Translation Tables

We turn now to the issue of how the translation table

entries are to be set up in the first place. That is, what

procedure is to be used for establishing that a particular

logical address is to map to a particular set of physical

addresses. One possibility, of course, is to have all the

mappings set up by the Network Control Center (NCC). This is

quite reasonable in certain cases. If some user wants his

computer to be addressable by some new logical address (i.e., by

a logical address not previously in use), it makes sense to have

him contact the NCC directly. If the user haq proper

authorization, the NCC can then take action to set Lp the new

entry in all the translation tables. A similar procedure would

also be app'opriate il so-e lg'ioal address i3 to be totally

removed from the translation tables (i.e., that logical address

will no longer be in use in thait netwo,-k), This procedure wouid

VP

- 76 -

x

Report No. 4473 Bolt Beranek and Newman Inc.

Lalso be appropriate when a particular computer is moved from one

location to another, necessitating a change in its

logical-to-physical mapping, or if the functionality of two

computers is combined into one, so that two logical addresses

which formerly mapped to distinct physical addresses now map to

the same physical address. What all these cases have in common
•i is that they are relatively infrequent (i.e., occurring on the

L order of days, rather than on the order of minutes), and they

require considerable advance planning. The first of these

characteristics ensures that NCC personnel will not be swamped

with translation table changes. The second of these

characteristics makes it feasible to coordinate such changes in

SI advance with the NCC. Unfortunately, not all translation table

changes have these characteristics. For example, we have

suggested that a good logical addressing scheme should facilitate

port-sharing. That is, some user might want to unplug one of his

computers from the network anO use that port for another

computer. He should be able to do this without much advance

planning, and without having to explicitly coordinate with the

NCC. As soon as the change is made, users who are logically

addressing the ftrst computer should be told that. it is no longer

on the network; only the logical address of the second computer

should map to this port. If this change in the mapping does not

take place immediately, the result can be mis-delivery of data,

as packets which are logically addressed to the first computer

7-. 77 -

Report No. 4473 Bolt Beranek and Newman Inc.

get mis-delivered to the second. A similar situation arises if

some computer consists of several "logical hosts." Logical hosts

may come and go quite frequently, with no advance planning at

all. The logical addressing system should be able to adapt

immediately to such changes, without any need for human

intervention. A related situation arises in the case of logical

aldresses which are multi-homed. We have already discussed

various possible criteria for choosing among the several physical

addresses associated with a single multi-homed logical address.

But before applying these criteria, any physical addresses which

are "inaccessible" from the source node must be excluded. If

some host has two access lines into the network, ard one of them

is inaccessible from a particular source node, then all traffic

from that source node should be directed to the other access

line. Indeed, this is one of the most important purposes of

multi-homing. This implies that a source node must have some way

of knowing that a certain physical address is rot currently

accessible. There are basically two classes of reasons why a

given physical address might be inaccessible from a source node.

The first is that there is no path from the source node to the

destination node (either because the network is partitioned, or

because the destination node, is down). This ioformation is

readily available from the routing tables, and need not be kept

in t'.e translation tatles. It is simple enough to check the

routing tal!es when choosing one from a set of physical

- 78

Report No. 4473 Bolt Beranek and Newman Inc.

[addresses. The other reason why a physical address might be

inaccessible is that the port itself, or the access line from the

port to the host, has failed. Functionally, this is the

equivalent of unplugging the host from the port. It may happen

quite frequently, however, and certainly with no advance

planning. As long as the node itself is up, the routing

algorithm will give no indication that the port is inaccessible;

this information must somehow get into the translation tables.

Clearly, we do not want to depend on human intervention to ensure

that this sort of change gets made in the translation tables.

What is needed here is a quick and reliable means of making

changes in the translation tables, not the cumbersome and

unreliable method of contacting the NCC. The same problem arises

when the inaccessible port becomes accessible again. One wants

to be able to begin using this port again as soon as possible,

without having to wait until NCC personnel have time to make the

appropriate changes in the translation tables. So although

certain sorts of changes to the translation tables can be made by

the N1CC, many sorts of changes will occur suddenly and

unexpectedly, and need to become effective immediately. So the

procedure of having all translation table changes made by the NCC

is not satisfactory.

There is another sort of problem wi'h having translation

table changes made by the NCC. The problem is that carelessness,

-79-

Report No. 4473 Bolt Beranek and Newman Inc.

either by the NCC or by host site personnel, can result "n

mis-delivery of data if changes are made by the NCC. Suppose,

for example, that a network controller makes a typographical

error, associating a logical address with an incorrect physical

address. If there is no further check on the validity of that

mapping, one computer may receive data intended for another. A

good logical addressing scheme should prevent this sort of simple

typographical error from resulting in mis-delivery. The same

situation can occur if one computer is carelessly plugged into

the wrong port. In this case, networks which use only physical

addressing might alsu mis-deliver data. However, with physical

addressing, one must expect mis-delivery if some computer is

plugged into the wrong port (i.e., given the wrong physical

addre3s) due to carelessness. With logical addressing, this is

not inevitable, and a good scheme should give better protection

against carelessness.

AnQther possibility for setting up the translation table

entries is to have each host, as it comes up on the network, tell

the netwo-k which logical addresses it wants to be addressed by

over each of its (physical) ports. This would require

auginentation of the host access protocol to include a "Logical

Address Declaration" (LAD) message. A given host could put as

many logical addresses as it wanted in each LAD message.

Multi-).omed hosts would send the same T.AD message over each of

-80-

Report No. 4473 Bolt Beranek and Newman Inc.

their ports. The logical addresses specified in the LAD message

received over a given port would all be mapped to that particular

physical address. Hosts would be allowed to change their logical

addresses at any time by sending a LAD message to the network.

Since a host may wish to add or delete logical addresses for

itself at any time, there would have to be two options for the

LAD message -- "add" and "delete." Whenever a particular port

goes down (either because the port itself fails to function

properly, or because the access line between the network and the

host fails, or because the host itself crashes), all mappings of

logical addresses to that port would be cancelled. When the host

can once again communicate with the network through that port, it

would have to redeclare its logical addresses with a LAD message

before it could receive any logically addressed traffic.

Allowing each host to set up its own logical-to-physical

aduress mappings in this manner has several advantages over

having all the mappings set up by the NCC. This procedure allows

sudden and unplanned mapping changes to take effect immediately,

with no need for advance planning and coordination with the NCC.

Since the mappings are cancelled immediately when a port goes

down, this procedure helps to ensure that, if one of a

multi-homed host's ports is down, all data which is logically

addressed to that host will go to the other ports. if one host

is unplugged from a given port, and another plugged in its place,

-81-

ItISReport No. 4~473 Bolt Beranek adNwa n

the procedure ensures that the mapping for the first host is

cancelled, while the mapping for the second host becomes

effective. When a host goes down, there is no assumption that

the same host will return in the same location. Hence

carelessness on the part of site personnel or NCC personnel

cannot result in mis-delivery of data; data which is logically

addressed to a certain host could only be delivered to a host

which has declared itself to have that logical address.

There are, however, two quite serious problems with this

procedure. The first problem is that of spoofing. That is, this

procedure offers no protection against the situation where one

host declares itself to be addressable by a logical address which

is supposed to be the logical address of a different host. Thus

the procedure allows one host to "steal" traffic intended for

another, simply by declaring itself to have the same logical

address as the other. This sort of spoofing might be done by a

malicious user, who is really trying to steal someone else's

data, or it might happen accidentally, as a result of programmer

or cperator error. In either case, we would like to have some

procedure which is less prone to spoofing. The other serious

problem with this procedure is that it can easily cause the

translatiun tables to overflow in size. If every host can

specify an uncontrolled and unlimited number of logical addresses

for itself, the-e is no bound on the size of the translation

-82-

Report No. 4473 Bolt Beranek and Newman Inc.

I tables. Since only a finite amount of memory will be available

for the translation tables, it is clearly not acceptable to allow1K each host to specify an arbitrary number of logical addresses for

[itself.

2.5 Updating the Translation Tables
1"

We have examined two different procedures for setting up the

- !logical-to-physical address mappings, and have found that they

both have problems. Many of these problems can be resolved,

however, by a combination of the two procedures. Let us define

two characteristics of a logical-to-physical address mapping,

which we will call "authorized" and "effective." A mapping from

a particular logical addrecs to a particular physical address is

"authorized" if a host which connects to the network at that

physical address is allowed to use that logical address.

Authorizations would change very infrequently, and only after

considerable advance planning. Hence it is appropriate for

authorizations to be determined (i.e., added and deleted) by the

NCC. A mapping from a particular logical address to a particular

physical address would be said to be "effective" from the
A

perspective of a given source node if (1) that mapping is

authorized, (2) that physical address is accessible from that

source node, and (3) the host at that physical address has, by

means of a LAD message, declared itself to have that logical

address. When a port goes down, all mappings to it will become

-8

Report No. 447 3 Bolt Beranek and Newman Inc.

ineffective, until they are made effective again by means of a

LAD message. Logically addressed traffic will not be delivered

to a particular physical address unless the mapping between that

logical address and that physical address is effective. Changes

in the effectiveness of a mapping will occur automatically, in

real-time, with no need for intervention by NCC personnel. This

facilitates multi-homing, since if there are two authorized

is effective, that one can be chosen all the time until the

second becomes effective also. It facilitates sharing of ports

(either by physical or by logical hosts), since each host has

control over the effectiveness (though not the authorization) of

the mappings that affect it. Carelessness by NCC personnel can

cause the wrong mappings to become authorized, but it is rather

unlikely that an incorrectly authorized mapping could become

effective -- that would require carefully planned malicious

intent. Therefore, such carelessness might prevent delivery of

data to some host, but would not cause mis-delivery of data.

Carelessness by site personnel, such as plugging a host i.oto the

wrong port, would not cause mis-delivery of data, since the

mapping of that host's logical address to that particular port

would oot be authorized. The possibility of spoofing is greatly

reduced; since host A cannot pretend to be host B unless it i at

a port which is already authorized for host B. The size of the

translation table cannot increase without bound, since that is

-84-

Report No. 4473 Bolt Beranek and Newman Inc.

determined by the number of authorized mappings, and cannot be

increased by LAD messages. This means, of course, that the

• I network access protocol must be further modified so that it can

provide positive and negative acknowledgments for the LAD

messages. For each logical address that a nost npecifie3 for

itself in a LAD message, the network must return either a

l positive or a negative acknowledgment. The positive

acknowledgment would indicate that the mapping is authorized and

has become effective. The negative acknowledgment would indicate

that the mapping is not authorized.

It must be emphasized that the suggested procedures are not

intended to provide security in any very strict sense. For

jnetworks in which security is a very important issue (e.g.,

AUTODIN II), further study of these issues should be carried out] by security experts.

It should also be emphasized that these procedures will

allow the logical addressing scheme to continue to function

normally even if the NCC facilities are down. It does require

centralized intervention to add or delete authorizations, and

this could not be done if the NCC were down. For a fixed set of

authorized mappings, however, no cent'alized intervention is

required to determine the effectiveness of the mappings. That

is, the real-time functionality and responsiveness of the logical

addre.ising scheme does not depend in any way Ln the proper

functioring of the NCC.

- 85 -

No. 4473 Bolt Beranek and Newman inc.

We have argued that the authorization of a mapping should be

determined by the NCC, and the effectiveness of a mapping should

be determined by the network node which contains the physical

address (port) to which the mapping is made, in cooperation with

the host that is connected to that port. We have also argued

that a full translation table (i.e., a table containing all the

effective mappings) should be stored at each network node (or

more precisely, at each network node which serves as an access

point for a host which can be either a source or a destination of

logically addressed traffic). However, we have not yet discussed

the algorithm by which the effectiveness or ineffectiveness of a

particular logical-to-physical address mapping is communicated to

all network nodes. We turn now to this issue. We will discuss

two very different methods for building up the translation tables

at all nodes.

The first method is based upon an extension of the SPF

routing algorithm, wherein each logical address is treated like a

stub node. In this methnd, each node is initialized with a

partial translation table. This table containz a list of all the

logical addresses which are authorized to map to that node,

(i.e., all the logical addresses which correspond to ports at

that node). Each of these logical addresses is associated with a

particular port or ports at that node. At initialization time,

each of these logical addresses is treated just as if it is a

- 86 -

Report No. 4473 Bolt Beranek and Newman Inc.

L
neighboring node which is down, and the node sends an update

I (similar to a routing update) to all other nodes, indicating that

all authorized mappings to itself are ineffective. When a host

comes up over a particular port, it declares its logical

[address(es) by means of one or more LAD messages. The node then

checks its table of authorized mappings, and acknowledges to the

1host (either positively or negatively) each logical address

mentioned in the LAD message. Whenever a logical address is

positively acknowledged, it becomes effective, and the node must

broadcast an update to all other nodes declaring that mapping to

be effective. Whenever a host declares (via a LAD message) that

it no longer wants to be addressable by a particular logical

address, an update must be generated declaring that mapping to bo

ineffective. Whenever a port goes down, all logical addresses

mapping to it become ineffective, and an update indicating this

must be broadcast. If the protocol used to disseminate these

updates is the same as the protocol used in the ARPANET to

disseminate the updates of the SPF routing algorithm, then all

nodes will be able to build dynamically an up-to-date table of

effective mappings, just as the routing updates enable them to

build an up-to-date topology table. (The procedure used to build

the topology tables is described in [1]. The updating protocol

is described i.n [2] and [3].) In effect, this procedure extends

the routing algorithm to treat the hosts (or more precisely, the

mappings of logical addresses to physical addresses) as stub

S87

SReport No. 4473 Bolt Ber;rnek and Fewman Inc.

nodes, and the ports as lines, except that there is no delay

associated with a port but only an up/down status.

This procedure is attractive from a conceptual point of

view, but it is not really cost-effective. That is, it seems to

be too expensive to be practical. One reason is that it is hard

to place a bound on the size of the updates. The updating

protocol of the ARPANET routing algorithm is quite efficient,

because the updates are so small. The maximum update size is

only 216 bits (from a node with 5 neighbors) The logical

addressing updates might be much looger, since .here is no limit

on the number of logical addresses that may map to a given node.

The updates would also have to be sent periodically, even when

'there in no change in state. These features are necessary to

ensure reliability in the face of such events as partitions, node

crashes, updates received out of order, etc. With no re,;triction

on the number of logical addresses which can map to a given node

(and it seems unwise to build in such a restriction), there is no

restriction on update size, and hence no bound on the bandwidth

needed for updating, or on the extra delay which may be imposed

on data packets due to the need to transmit the updates. Another

disadvantage of the protocol is that it requires the use of a

* broadcasting protocol, which would have to be implemented in all

network nodes, not just the ones which need logical addressing.

This could make it completely unfeasible for the ARPANET.

-88 -

Fýport No. 447-30 Bolt Branek and Newman Inc.

The updating protocol which was designed for the SPF routing
Lalgorithm was designed to get the updates to all nodes very

I quickly, and with 100% reliability, even in the face of various1.,

types of network failures. This extreme speed and'reliability is

S!. Knecessary for routing updates, since rapid and reliable updating

of the routirg tables is necessary to ensure the integrity of the
network. Routing failures, after all, can make the network

I completely unusable, and can be very difficult to recover from,

since most recovery techniques depend on the NCC's ability to

communicate with tbc nodes, which in turn depends upon the

integrity of the routing algorithm.. Fortunately, the protocol

used for disseminating the logical addressing updates does not

need all the functionality of the updating protocol used for

routing, since the integrity of the logical addressing scheme is

not quite as critical as the integrity of the routing algorithm.

This enables us to use a simpler and less expensive method of

maintaining the translation tables, which tie will now discuss.

In this second method, each node is initialized with a

translation table containing all the authorized mappings. This

table would have an entry for every logical address that can be

used in the network. Each logical address would be associated in

the t.able with all the physical addresses to which it has an

authorized mapping. Associated with each of these physical

addresses would be a Boolean variable indicating whether that

- 89-

Report No. 4473 Bolt Beranek and Newman Inc.

particular logical-to-physical address mapping is effective or

ineffective. At initialization time a node would mark all

mappings to itself as ineffective, and all mappings to other

nodes as effective. Whenever a host declares itself, via a LAD

message, to have a certain logical address, the node looks in the

translation table to see if that mapping is authorized. (This is

just an ordinary table look-up, indexed off the logical address.)

If not, a nega.tive acknowledgment is sent to the host. If the

mapping is authorizad, a positive acknowldgement is sent, and the

entry in the translation table is marked effective. Whenever a

port goes down, the node marks all mappings to that port as

ineffective. Of course, this also requires a "reverse" search of

the table (i.e., a search based on a physical, rather than

logical address). To make this more efficient, when the initial

reverse search is done at initialization time, the node can save

a list of pointers into the translation table. Each pointer

would correspond to a physical address entry for that node. If a

separate table of pointers is kept for each port, the node will

be able to find in a very efficient manner entries which map to a

particular port. Using this methodology, each node's translation

table will correctly indicate, for each of the logical addresses

that map to it, whether or not that m-,pping is effective. (Of

course, these pointers would have to be adjusted whenever table

insertions or deletions are made.)

- 90 -

= =:

Report No. 4473 Bolt Beranek and Newman Inc.

.L
When a source host sends a logically addressed datagram

packet into the network, the source node will search the

translation table for the correct mapping. If that logical

address cannot be found, i.e., its use is not authorized, an

2 {error message indicating this fact should be returned to the

host, and the packet discarded. If that logical address isI
• 1. found, but all the corresponding physical addresses are either

marked ineffective, or else are unreachable (according to the

routing algorithm), then the packet should be discarded, and the

' I host informed of that fact. If some of the physical addresses

are both reachable (according to routing) and marked effective,

then one should be chosen, according to some set of criteria

(perhaps one of those which we discussed above). The chosen

physical address should be placed in the packet header, along

with the logical address. The packet should then be forwarded to

its destination; in doing the forwarding, tandem nodes will look

only at the physical address. According to the procedure

described in the previous paragraph, all mappings to remote ports

will be initially marked effective. To see how such mappings can

get marked ineffective, we must see what happers when a logically

addressed packet reaches its des';ination node.

When a logically addressed datagram packet reaches its

destination node, the node looks up that logical address in its

translation table. It is possible, of course, that that logical

- 91 -

Report No. 4473 Bolt Beranek and Newman Inc.

address will not be found at all, or that it will be found, but

that there will be no authorized mapping to this particular

destination node. This would indicate some sort of disagreement

between the translation tables at the source and destination

nodes. There are three possible causes of thie disagreement:

(1) NCC error in setting up the translation tables, (2) deletion

of the authorization for that particular logical address while

the packet was in transit, or (3) a race condition, whereby a

translation table update authorizing the new logical address is

taking place, but the update has not reached that destination

node yet. In any case, the data packet should be discarded

without delivery, and an error message should be sent to the NCC

indicating receipt of a packet with an unauthorized logical

address. This will alert NCC personnel to a possible error. If

the authorization for that logical address was deleted while the

packet was in transit, however, then the NCC need not take any

action; having the destination node simply discard the packet is

the correct procedure. If, on the other hand, that

logical-to-physical mapping is really authorized, but the update

making the authorization has not yet reached the destination

node, then we want to take the same action as we would take for a

packet delivered according to an authorized but ineffect've

mapping. This action shall be described in the next paragraph.

- 92 -

Report No. 4473 Bolt BeraneK and Newman Inc.

Suppose that, upon looking up the logical address in the

translation table, the destination node does find an authorized

mapping to itself, but that mapping is marked ineffective. Then

there are two actions to take. The first action is to try to

re-address and then re-send the message. Of course, this can

only be done if the destination logical address is multi-homed,

and at least one of the corresponding physical addresses is

effective. If this is not the case, the packet must be

discarded. The second action is to send a special message back

to the source node of that datagram packet. We will call this

message a "DNA message" (for "Destination Not Accessible"). The

DNA message will specify that the particular logical-to-physical

address mapping used for that packet is not an effective mapping.

The DNA message should also be sent in response to datagrams

which appear to have unauthorized mappings (see previous

paragraph). For reliability, each logically addressed datagram

must carry the physical address of its source node (though not of

its source host), so that the DNA message can be physically

addressed to the source node. It is not enough for the packet

simply to carry the logical address of its source host, for two

reasons. The first reason is that if the source host is

multi-homed, the destination node will not know which source node

the packet came from, and hence will not know where to send the

DNA message. The second reason has to do with the fact that one

situation in which DNA messages may have to be sent is the

"-93-

Report No. 4'173 Bolt Beranek ana Newman Inc.

R situation in which the translation table at the destination node

has been set up erroneously. In this case, we do not want to

have to rely on the integrity of the translation table to ensure

proper delivery of the DNA message.

When a source node receives a DNA message indicating that a

certain logical-to-physical address mapping is ineffective, it

must find the proper entry in its tratslation table, and mark

that mapping as inerfective. Henceforth, incoming packets with

that particular logical address will not be sent to that

particular physical address. If the logical address is

multi-homed, packe.ts will be sent to one or more of the other

physical addresses, unless all the mappings for that logical

address are ineffective. If this is the case, packets for that

logical address will be discarded by the source node, which

should also return some sort of negative acknowledgment to the

source host. We see then that the DNA messages provide a

feedback mechanism which enables a source node to tell when a

mapping to a remote port jlS ineffective. The source node has no

way to tell whether this is the case, until it sends a packet to

that port. After sending the packet, it wi.ll be explicitly told

by the DNA message if the mapping is ineffective. If it receives

no DNA message, it assumes that the mapping is effective. This

may mean, of course, that some logically addressed packets are

sent to a wrong physical address. However, if there are other

- 94 -

Report Na. 4473 Bolt Beranek and Newman Inc.

possible physical addresses corresponding to that logical

address, and the original destination node has one of those other

mappings marked as effective, the packet will be re-addressed and

re-delivered, so there is no data loss. Note that there are two

possible reasons why a given logical-to-physical address mapping

might be ineffective: (1) the physical port might not be

operational, or (2) the host at that physical address might not

have declared itself addressable with that logical address. If

desired, the DNA message can indicate which of these two reasons

is applicable in the particular case in hand. This information

can be stored in the source node's translation table, and passed

on to source hosts which try to use a logical address for which

all the mappings are ineffective.

This procedure enables all nodes to find out when a

particular authorized mapping is ineffective. We also need a

procedure to enable the nodes to find out when an ineffective

mapping becomes effective again (i.e., a port comes back up, or a

new LAD message is received at some remote site). A simple but

effective method is the following. At periodic intervals (say,

every 5 or 10 min,:tes) each node will go through its translation

table and mark all the entries which map to remote ports to be

effective. (Entries which map to local ports will be marked

effective or ineffective according to procedures already

discussed. The current procedure will not apply to such

I

SL,
- 95 -

Report No. 4473 Bolt Beranek and Newman Inc.

entries.) This enables mappings to be used again shortly after

they become effective. Of course, this scheme will result in

some packets being sent to the wrong physical address. Whe

happens, however, a DNA message will be elicited, causing that

mapping -o be marked ineffective again in that source node.

Furthermore, this scheme does not cause any unnecessary data

loss, since packets sent to the wrong physical address will be

re-addressed and re-aelivt ed, if possible.

Although this method requires all nodes to periodically mark

all mappings to remote ports effective, it is important to

understand that it does not require any time-synchronization

among the various nodes. Also, there is no reason why all the

mappings have to be marked effective at the same time. For

example, if the translation table contains 600 mappings, rather

than marking all of them effective every 10 minutes, it may be

more efficient to mark one mapping effective each second, thereby

cycling through the table every ten minutes (though if this

method is used, it must take account of table compressions and

expansions which may occur as the NCC adds or deletes

authorizations).

There is also an issue as to the exact methodology to be

used to send the DNA messages. The simplest method is for a

destination node to send a DNA message to the source node of each

packet which arrives as the result of an ineffective mapping. if

- 96 -

FEL

Report No. 4473 Bolt Beranek and Newman Inc.

this method is used, there is no need to use a reliable transporK

L protocol in sending the DNA messages. If, for some reason, a DNA

message fails to get through to the source node, more packets

will arrive at the wrong destination node, causing more DNA

messages to be sent, until one of them finally gets through.

This method, however, might generate a virtually unbounded number

of DNA messages, particularly in pure datagram networks with no

flow or congestion control. This in turn might contribute to

network congestion. In order to gain better control of the

throughput due to DNA messages, o.ie could imp~lement a scheme

which ensures that only one DNA per ineffective mapping per

source node can be sent within a certain time interval. This

scheme would have a significant cost in table space, however.

Also, it would require some sort of reliable transport protocol

(e.g., positive acknowledgments from the source node when it

receives the DNA message) to protect against the case where a DNA

message is lost in transit. This issue would have to be

carefully considered before any implementation is done.

The procedure to follow with virtual circuit traffic is very

similar. In the ARPANET, a single virtual circuit or

"connection" is individuated by the source and destination

physical addresses. The user takes no part in setting up a

connection; whenever a user sends a packet to the network which

is not a datagram, the network checks to see if a connection from

-97-

Report No. 4473 Bolt Beranek and Newman Inc.

the user's physical address to the destination physical address

that he specified is already in existence. if not, the IMPs

automatically run a protocol to set up such a connection. WithI logical addressing, we would want to redefine the notion of a

connection so that connections are individuated by source and

destination logical address, rather than physical adciresZ.

However, tranislation would be done only at connection setup time,

Thereafter, all virtual circuit packets received by a given

source node with the same source logical address and destination

logical address would be sent on the same connection. If a

destination node receives a connection setup message for a

logical address whose mapping is ineffective, it will refuse the

connection, just as it would refuse a setup message for a

physical connection to a dead port. When the source node

receives the refusal message, it will mark that particular

logical-to-physical mapping as ineffective. If the destination

logical address is multi-homed, the source node can attempt to

set up the connection again, but with a different physical

destination address. If a mapping becomes ineffective after a

connection has already been set up, the destination node will

take action to reset the connection, also informing the source

node that the mapping is iow ineffective.

Note that logically addressed virtual circuit packets need

not carry in thei.r headers the logical addresses of either the

-98-

W

Report No. 4473 Bolt Beranek and Newman Inc.

source or destination hosts, since that information can be stored

in the connections tables at the source and destination nodes.

Of course, all packets sent on a particular logical connection

will go to the same physical destination port. However, if the

destinati.on node cr port gaes down, and the destination host is

multi-homed, the above procedure automatically ensures that a new

connection will be opened to one of the ports which is not down.

Since the ARPANET connection protocol is transparent to the user,

the user need never know that this has happened.

It is interestirg to compare this procedure (based on DNA
messages) with the previously discussed procedures (based on an
updating protocol sinilar to that used for the SPF routing

algorithm). The latter procedure would ensure that all nodes

always agree (except during some very short transient period) on

precisely which mappings are effective and which are not-4

Mappings would be marked effective (or ineffective) almost as

soon as they become so. There would be no need for the source

nodes to probe the destination nodes by sending data packets to

poseib.y incorrect physical addreses. The procedure we are

recommending does not have these features. In the recommended
Sprocedure,• different, nodes' Itranslation tables would, not

necessarily be in agreement all. the time as to which mappings are

or are not effective, and probing is necessary. This is an

acceptable situation though, since the sort of universal and

99

Report No. 4473 Bolt Beranek and Newman Inc.

immediate agreement which is necessary to ensure the proper

functioning of a routing algorithm just is not needed to ensure

the proper functioning of the logical addressing scheme.

However, the lack of universal agreement does require that

translation be done at source nodes rather than tandem nodes,

since the DNA-based procedure, while designed to keep the tables

at source nodes up-to-date, will not necessarily have the same

effect at tandem nodes. (That is, DNA messages are sent to the

source nodes, not to tandem nodes.)

There is only one situation in which re-translation should

be done at the tandem nodes. Suppose a logically addressed

packet arrives at a tandem node, and that node, after checking

its rout."ng tble, sees that the physical destination address of

that packet is unreachable. If the packet is a virtual circuit

pa-ket, or the tandem rode -does not i-.,plement logical addressing

(i.e, doos not contain a bransiation table), the packet must

simp_1y b d c car . But if the packet is a datagram, and the

tandem node coes have a translation table, it should re-.translate

Sthe de.tinaticn address. and re-addreess the packet. This3

proced.re can help to prevent: unnecessary data loss. Note that

this tande-. node translation, would happen only rarely, and cnly"

in, situations i- -hich i c-u-ld not serve to defeat the criteria

according to which the source node transiatlon was done.

•-• - .= 100 -Ii

fl Report No. 4473 Bolt Beranek and Newman Inc.

It should be noted that, with the recommended procedure

(unlike the alternative), the size of the translation table at

Seach -ode is a function only of the number of authorizations.

K That is, only changes in the authorizatiens require insertions or

deletions to the table. This justifies our previous claim that

insertions and deletions are relatively rare events.

It should also be pointed out that nothing in this procedure

prevents a computer from being multi-homed to a single node.

2.6 Operational and Implementation Considerations

This procedure requires each network node to maintain a full

table of authorized mappings. There are operational advantages

to requiring all nodes to have precisely the same translation

table; this simplifies the process whereby one node can be

reloaded from another in case of failure, and reduces the amount

of site-dependent information that must be maintained in the

nodes. (In general, the more site-dependent information there

is, the larger the Mean Time to Repair will be.) We have not

spoken explicitly of the way in which NCC personnel add or delete

authorizations. This will require some protocol between the

nodes and the NCC. This protocol would be similar in some ways

to the protocol used to broadcast software patches or packages to

the nodes. However, since we want to be able to make incremental

I changes to the tables (rather than broadcasting an entire new
L -0

-101-

Report No. 14473 Bolt Beranek and Newman Inc.

table each time a change must be made), the node will have to

contain routines to add to or de7te from the tables. The node

may have to inhibit interrupts while modifying its table, so that

no translations are done while the table is in a state of flux.

Also, no reloads may be done from a node whose table is in a

state of flux. These last two restrictions are needed to prevent

race conditions; these restrictions are easily implemented.

When the NCC makes a change to the table of authorizations,

it will want to receive some sort of positive feedback,

indicating that the change has indeed been made. One method of

doing this is to associate a sequence number with every "add" or

"delete" command. Each node could periodically report to the NCC

the sequence number of the last command that it fully executed,

and an entry could appear in the log whenever the sequence number

is other than expected. If the nodes refuse vo execute commands

which are received out of sequence, this would enable the NCC to

determine whether each node has received the correct sequence of

commands.

If memory considerations make it impossible for each node to

contain a table of all authorized mappings, it is possible to get

by with a shoTter table. Strictly speaking, each node's table

need contain only the logical addresses which map to that node

itself, plus those logical addresses which the node's own local

hosts are allowed to use. While this smaller table may take less

- 102 -

_ j

J Report No. 4473 I3o1,. Beranek and Newman Inc.

memory, it would, however, increase the opetational difficulties

of table maintenance. We have not yet saidI z.'ything explicit

about the format of a logical address. We r,'commend use of a

16-bit field for coding the .ogical addresses. Th", should be

enough to prevent bit-coding limitations from placing any

restriction on network growth. The only other information needed

in the translation table is (1) destination node physical a.dress

(8 bits should suffice), (2) one bit for the

effective/ineffective variable, (3) enough bits to code the port

numbers, and (4) enough bits to code any variables needed to

implement the selection criteria used fcr multi-homed hosts.

This should not take more than two or three 16-bit words per

entry. If space is a problem, it is possible to shorten tl-e

tables somewhat by deleting the port numbers. Strictly speaking,

port numbers are only needed by the destination nodes, and hence

need not appear in each node's copy of the translation table.

However, eliminating the port numbers from the common table

increases the amount of site-specific information in the tables,

which is a disadvantage in itself.

It goes without saying that the use of logical addressing

has implications for the network access protocol. We have

already discussed one aspect of the network access protocol,

viz. the need for the host to send LAD messages to the source

node, and the need for nositive and .Aegative acknowledgments to

13- 13-

__•:C--

Report No. 4473 Bnlt Beranek and Newman Inc.

be returned to the host. A LAD message from a particular port

contains a list of logical addresses, with an indication for each

one as to whether the host wants the mapping of that logical

address to that rort to be effective or not. When a h'ost

declares a mapping to be ineffective, the source node must always

return a positive acknowledgment, and must mark the rmapping

incffective in its translation table. However, if the mapping is

not authorized (i.e., not in the translation table), the source

node should also return a warning to the source host, since host

error is likely. When a host declares a mapping to be effective,

the node will return either a positive or negative

acknowledgment, depending upon whether the mapping is authorized

or not. When a host declares an authorized mapping to be

effective, the node must mark it so. The host should be allowed

to send LAD message. to the node at any time, and they should

take effect immediately.

2.7 Network Access Protocol implicatiors

T e use of a logical addressing scheme also has implications

on the part of the network access protocol that is used for

ordinary data transport. When a source host passes a message to

its source node, the message leader must indicate whether logical

or physical addressing is desired (assuming the network allows

both). If logical addressing is desired, the destination logical

address must be indicated. The sourcýe node must be able to

=22=20==

r~1L Report No. 44L73 Bolt Beranek~ and Newman Inc.

discard tnat message (with an appropriate negative

acknowledgment) if there is no effective mapping for that logical

f address. The source host must also be able to indicat.e its own

logical address, if it wants to make this known to the

destination host. (Since the source host may have several

logical addresses, it must explicitly choose one to be carried to

the destination host.) Again, the source node must be able to

negatively acknowledge and then discard the message if the

mapping from that logical address to the source host's physical

address is not effective. Alternatively, one may want to return

this sort of negative acknowledgment only if the source logical

address mapping is unauthorized, a'id allow the message to be sent

if the mapping is authorized but ineffective. If this is done, a

particular "logical host" may be allowed t- send data, but not to

receive it.

When a logically addressed message is passed from the

destination node to the destination host, the message header must

contain the destination logical address (since the destinatior

host may have more than one logical address), and the source

logical address, if any. This implies, of course, that the

source and destination logical addresses of datagram packets must

be carried across the network ir the packet header. (For virtual

circuit packets, the logical addresses can be kept in the

connection blocks in the source and destination nodes.) The

-105-

Report No. 44 7 3 Bolt Beranek and Newman Inc.

internal packet header mu3t also carry the physical destination

node number (for addressing at tandem nodes), and the physical

source node number (so that DNA messages can be returned without

having to rely on the integrity of the translation tables).

However, these physical node numbers need not be passed to the

destination host. Note that there is no need for the internal

packet header to carry source or destination port numbers, since

these are usually determined by the combination of physical node

number and logical address. In the case where a host is

multi-homed to a single node, the port numbers are not so

determined, but the destination node can make a choice of ports

"at the last minute," either by choosing according to one of the

criteria already discussed, or by choosing the port with the

shortest queue.

These considerations constitute a functional specification

for a modified network access protocol that would allow logical

addressing. Detailed specification of the modified protocols

(SIP for AUTODIN II and 1822 for ARPANET) may depend heavily on

implementation considerations, and will be put off until such

time as implementation is considered,

-106 -

Report No. 4473 Bolt Beranek and Newman Inc.

REFERENCES

[1] E.C. Rosen, J.G. Herman, I. Richer, J.M. McQuillan, ARPANET
Routing Algorithm Improvements -- Third Semiannual Technical
Report, BBN' eport No. 4088, April 1979, chapter 2.

[2] J.M. McQuillan, I. Richer, E.C. Rosen, D.P. Bertsekas,
ARPkNET Routing Algorithm Imrrovements -- Second Semiannual
Report, BBN Report No. 3940, October 1978, chapter 4.

[3) E.C. Rosen, "The Updating Protocol of ARPANET's New Routing
Algorithm," Computer Networks, February 1980, Volume 4, p. 11.

Jr -107 -

Report No. 44 7 3 Bolt Beranek and Newman Inc.

3. THE APPLICABILITY OF SFF ROUTING TO AUTODIN II

Determining the applicabilty of the ARPANET's routing

algorithm (SPF) to AUTODIN II raises a number of issues, among

them:

1) Can any single-path, delay-oriented routing algorithm

meet the performance iequirements of AUTODIN !I?

2) Will SPF be as stable in the AUTODIN II environment as

in the ARPANET, or will the higl'er connectivity and

shorter average pzth length cause it to perfom less

well?

3) Will SPF use an excessive amount of trun!, and/or nodal

bandwidth in the AUTODIN II environment?

'4) What impact will the multi-computer architecture of

AUTODIN II have on SPF?

5) What impact will the presence of parallel trunks between

)air of nodes have on SPF?

The first two issu s will not be discussed in this chapter. They

are best approached th-ough simulation and will be considered in

the second year of the contract when our network simulator is

availaole. The last three issues, however, do not require

simulation, and will be dealt with here.

1- 08

-1 _

Report No. 4473 Bolt Beranek and Newman Inc.

We begin with a discussion of the amount of bandwidth needed

for the SPF algorithm. In the ARPANET, the amount of table space

(in 16-bit words) needed tG hold the topological data base and

the update retransmission timers used by the algorithm is given

L by the formula 4N + 2L + 0.125CN, where N is the number of nodes

in the network, L is the number of (bidirectional) lines, and C

is the average connectivity of (i.e., average number of lines per

V r node in) the network. In the ARPANET, therefore, if 80 nodes and

100 lines are allowed, and the average connectivity is 2.5, the

amount of memory needed for tables is 545 words. This same

formula should be applicable to AUTODIN II. If a routing update

packet generated by a particular node contains V bits of overhead

and one word for each trunk emanating from that node, and if a

given node can generate an update at most onc, every M seconds,

and if there are N nodes with average connectivity C, the maximum

aniount of trunk bandwidth (in bits per second) needed to carry

the routing updates is given by the formula N(V + 16C)/M. (There

are N/M updates per second, and the average update size is

V + 16C bits.) Note that because of the way the updating

protocol works, every update traverses every network line, so an

identical amount of bandwidth is needed on each trunk. In the

ARPANET, V = 136 bits, C = 2.5 lines per node, M = 10 seconds,

and N = 64 nodes, so the maximum bandwidth used is 1126.4 bps, or

2.25% of a 50 kbps line. Note though that this i- the maximum

bandwidth, not the average bandwidth. Although the maximum rate

I1
S~- 109 -

Report No. 4473 Bolt Beranek and Newman Inc.

at which an IMP can generate updates is once every 10 seconds,

the average rate (as measured empirically) is about once every 40

seconds, which means that the average bandwidth is 281.6 bps or

0.56% of a 50 kbps line. This formula should also be applicable

to AUTODIN II. In BBN Report No. 3803 (ARPANET Routing Algorithm

Improvements, First Semiannual Technical Report), section 6.3, it

is demonstrated that, as a general rule of thumb, the average

amount of processing needed to respond to the delay update for a

given line is 1.1H/C ms., where H is the average path length of

the network and C is the average connectivity. Since each update

contains an entry for C lines, on the average, the average amount

of computation per update received and accepted is 1.1H ms. in

the ARPANET. (Note that this does not include updates which are

not accepted, because they are duplicates or are out-of-order.

Such updates are discarded and the computation involved should be

negligible.) While the figures of 1.1H ms. would not be expected

to hold exactly in AUTODIN II, the proportionality to H should

still hold. Sirce the AUTODIN II nodes are 10 years more modern

than the ARPANET nodes, a given amount of computation should take

much less time. On the other hand, the figure of 1.1H ms.

applies only when the delays on all trunks are about equal. When

congestion is present, the computation would be expected to take

somewhat longer (see BBN Report No. 3803, pg. 130). The

proportionality to H, however, is still a good rule of thumb.

- 110 -

Report No. 4473 Bolt Beranek and Newman Inc.

Before these formulas can be applied to AUTODIN II, certain

design decisions must be made. In AUTODIN II, each Packet

H Switching Node (PSN) can contain several independent computers.

These computers are fully connected by means of a high speed bus

[(PCL), so that each can communicate directly with all the others.

Some of the computers, the SCM's, will perform switching

functions (i.e., will terminate internode trunks). Others, the

TAC's, will perform terminal concentration functions. Each host

or TAC will interface directly to a particular SCM. An important

decision to be made is whether the basic unit of routing should

be the PSN or the SCM. In AUTODIN II there will be only eight

PSN's, but as many as twenty SCM's. (This latter figure is taken

frgm Appendix K of Western Union's AUTODIN II Design (Technical)

Specification.) If routing is done on a PSN basis, then, in

effect, routing has to deal with only 8 nodes. The routing

algorithm would not be aware of the internal structure of each

PSN. If a PSN is composed of SCM's A and B, and host H accesses

the network via SCM A, the routing algorithm would route traffic

for H indiscriminately to either A or B; routing would have no

way to distinguish between these two SCM's. This implies that

the SCM's within a PSN must run some internal routing protocol,

SLso that traffic which arrives at the "wrong" SCM can be shuttled

St• over the PCL to the correct SCM. Clearly, more optimal routing

is possible if routing is done on an SCM basis, but in this case

:j the routing algorithm must deal with 20 nodes instead of 8.

- 111 -

Report No. 4473 Bolt Beranek and Newman Inc.

Since the amount of bandwidth needed for the SPF algorithm is

sensitive to the number of nodes, it is important to decide

whether routing should be done on an SCM basis or a PSN basis,

Another design decision which must be made before our

formulas can be directly applied to AUTODIN II has to do with the

presence of parallel lines. A given pair of PSN's may be

connected by several trunks running in parallel. Whenever

several trunks running in parallel have cemparabie depay

characteristics, best performance (i.e., least delay and greatest

throughput) is obtained by having them serve a single queue. (We

will consider the case of heterogeneous parallel trunks later in

this section.) If the parallel trunks are to be run on a "single

queue, multiple server" basis, the routing algorithm need not

distinguish among them. Rather, routing should treat the set of

parallel trunks as a single trunk. This means that if routing is

done on a PSN basis, the network will have 8 nodes and 16 trunks,

with an average connectivity of 4 and an average path length of

1.43. (See Figure 3-1.)

If routing is done on an SCM basis, however, determining the

average connectivity and average path length is somewhat more

complicated. When routing is done on a PSN basis, the routing

algorithm need not take account at all of the PCL's which fully

interconnect the SCM's within a PSN. In order to do routing on

an SCM basis, however, the routing algorithm must model each PCL

-112-

Report No. 4473 Bolt Beranek and Newman Ine.

YY

\ I j /,J m:--• •'I

Z j
z

#

:// (J

N2<" < # I r
"I X i:i ,,

"- . fcciC. " 1=/• ; /

- 113 -

Report No, 4473 Bolt Beranek and Newman Inc.

as a set cf trunks. For examiple, if there are 4 SCMIs in some

PSN, 1"hen the routing algorithhm must treat the PCL in that PSN as

if it were 6 bidirecticna! trunks, one between each pair of

SCM's. Another complication has to do with the fact that when

several trunks run in parallel between a pair of PSN's, it does

nOt follow that they run in parallel between a pair of SCM's.

Let PI be a PSN containing SCM's Al and BI. Let P2 be PSN

containing SCM's A2 and B2. If P! and P2 are connected by a pair

of parallel trunks, it may mean that Al and A2 are connected by

that pair of trunks, or it may mean that Al and A2 are connected

by a single trunk, as are BI and B2. The former situation tends

to result in a lower connectivity but a higher average path

length than the latter, and these factors affect the amount of

bandwidth needed to perform SPF routing. Unfortunately, the

trunking of AUTODIN II at the SCM level has not yet been

determined. Therefore, we will carry out the computation for

SCM-based routing in two ways. First, we will consider a network

where the trunks are arranged so as to maximize the parallelism.

(See Figure 3-2.) That is, in the network, whenever several

trunks run -n parallel between a pair of PSN's, we will assume

that they also run in parallel between a pair of SCM's. ThisI
network has 20 nodes, 36 lines, an average connectivity of 3.60,

and an average path length of 2.38. Second, we will consider a

network where no two trunks run between the same pair of SCM's.

(See Figure 3-3.) This network has 20 nodes, 48 lines, an

- 114 -

-- --- - -

Report No. 4473 Bolt Beranek and Newman Inc.

IId

0CV
L •L / /

/!/

.- 5I

i V)

S• --

C44

%N N

r4 W
l0C. M1

W 6z W 0 0 -0

2

115-

Report No. 4473 Bolt Beranek and Newman Inc.

IX
aC

0b

aC

-5-

Z LL

-116-

Report No. 4473 Bolt Beranek and Newman Inc.

average connectivity of 4.8, and an average path length of 2.04.

We can now compute the bandwidth requirements for each of

the three possible configurations of AUTODIN II:

1) Table Space: 4N + 2L + 0.125CN wor'ds

a) PSN-based routing: N = 8, L = 16, C = 4.0

Total memory used for tables = 68 words

b) SCM routing, maxima-: parallelism: N = 20, L = 36,

C = 3.60

Total memory used for tables = 161 words

c) SCM routing, no parallelism: N = 20, L = 48, C = 4.8

Total memory used for tables = 188 words

2) Trunk bandwidth: N(V + 16C)/M bps. We assume that as

in the ARPANET, V 136 bits and M = 10 seconds.

a) PSN routing: N 8, C 4.0

Total trunk bandwidth 160 bps (0.29% of a 56 kbps

trunk)

b) SCM routing, maximal parallelism: N = 20, C = 3.60

Total trunk bandwidth = 387 bps. (0.69% of a 56 kbps

trunk)

c) SCM routing, no parallelism: N = 20, C 4.8

- 117 -

Report No. 4473 Bolt Beranek and Newman Inc.

Total trunk bandwidth 426 bps (0.76% of a 56 kbps

trunk)

3) Processing bandwidth: I.IHN/M ms./sec.

a) PSN routing: H = 1.4K, N = 8, M = 10 secs.

Processing bandwidth ; 1.26 ms/sec. or 0.13%

b) SCM routing, maximal parallelism: H = 2,38, N 20,

M : 10

Processing bandwidth = 5.24 ms/sec., or 0.52%

c) SCM routing, no parallelism: H = 2.04, N = 20, M = 10

Processing_ bandwidth = 4.49 r,:./sec., or 0.45%

We see then that the bandwidth requirements of SPF routing in the

AUTODIN II environment are quite modest, even if routing is done

on an SCM basis. Of course, there are other possible topological

layouts of AUTODIN II, for which the figures wall be slightly

different. Even if our figures are off by as nut.h as an order of

magnitude, however, SCM-based SPF routing still seems acceptable.

(It should also be pointed out that PSN-based routing requires a

second routing algorithm to be run internally in the PSN's, and

this will also use some nodal bandwidth. When this is taken into

account, it is entirely possible that PSN-based routing will be

more expen3ive, in terms of nodal bandwidth, thb; SCM-based

= routing.)

- 118 -

Report No. 4473 Bolt Beranek and Newmian Inc.

Since the choice between SCM-based SPF routing and PSN-based

SPF routing is not determined by bandwidth considerations, the

choice between these two routing methodologies can be based on

considerations of optimality. That is, which approach will

result in better network performance? With either approach, it

will sometimes be necessary for packets to be shuttled within a

SPSN from one SCM to another over the PCL. With SCM-based

routing, the routing algorithm can take account of the cost of

the shuttling, treating it as an extra hop, no different in

principle from a hop between PSN's over an internode trunk. With

PSN-based routing, however, this shuttlii-g is made transparent to

the routing algorithm. The use of PSN-based routing, therefore,

is essentially equivalent to assuming that the shuttling has zero

cost. At first glance, this assumption might seem appropriate.

The bandwidth of thp PCL is about 8 megabits per second, and the

PCL itself is only a few feet long, so neither the transmission

delay nor the propagation delay imposed by the PCL seem

significant. This reasoning, however, is somewhat simplistic.

According to AUTODIN II Western Union Technical Note 77-03, the

polling discipline of the PCL is such that the queuing delay seen

by oackets which must traverse a particular PCL is directly

proportional to the number of processors connected to that PCL.

Furthermore, that note claims that as the number of processors in

the PSN gets to around 10, the queuing delays are roughly of the

same order as the queuing delays over ordinary internode trunks.

- 119-

Report No. 4473 Bolt Beranek and Newman Inc.

This means that it is important for the routing algorithm to take

account of th.. PCL, and to treat shuttling within a PSN as an

extra hop. Even if the delay imposed by the PCL were not

significant, however, it would still be important for routing to

determine exactly which SCM's a packet must go through. Each SCM

that a packet passes through adds a certain amount of processing

delay. This can become significant under heavy load. For best

performance, the routing algorithm should have the option of

routing packets around SCM's which are especially heavily loaded.

This ability is lost if routing is done on a PSN basis. It is

also the case that, within a PSN, some SCM's may have fewer

available buffers than others. If some SCM's are congested while

others are not, routing should try avoid the use of the

congested ones. This can only be accomplished if routing is done

in an SCM basis. In fact, if routing is done on a PSN basis, the

routing algorithm has no way to control the amount of shuttling

of packets within a PSN. Since this shuttling does have a delay

cost, especially when the SCM's within a PSN are not uniformly

loaded (and this appears to be a very likely case), PSN-based

routing is clearly inferior. PSN-based routing is also inferior

*• with r •scect to throughput. The maximum effective throughput of

a PSN is inversely related to the amount of shuttling that must

be done from one SCM to another. If the routing algorithm can

have no effect upon the amount of shuttling (as in PSN-based

routing), we would expect a lower maximum throughput.

-120-

' i

Report No. 4473 Bolt Beranek and Newman Inc.

In fact, it may actually be difficult or eve., impossible to

do any sort of accurate routing on a PSN basis. The reason is

[that it is difficult to perform an accurate delay measurement if

the routing algorithm cannot take account of individual SCM's.

1. For the reasons noted above, the delay seen by a packet which

I. imust leave a PSN by a certain trunk may vary greatly, depending

on whether the packet enters the PSN at the SCM connected to that

Si trunk, or whether it enters at a different SCM. Yet PSN-based

routing requires that only one value of delay ba assigned to the
trunk. Presumably, this would have to be some sort of weighted

average of the delay experienced by packets arriving at the

U various SCM's. However, since any given packet arrives at some

particular SCM, the weighted average may not be a good predictor

of the delay for any packet. Therefore, PSN-based routing

necessarily distorts the delay measurements, thereby causing

further sub-optimalities in the routing.

Another criterion which favors SCM-based routing over

L• PSN-based routing is robustness. It is possible that failures of

S-- the PCL, or the components connecting the individual processor&

to the ?CL, will cause a PSN to become partitioned, in the sense

that not all of the SCM's within the PSN will be able to

communicate with each other. If PSN-based routing is used, this

Ssituation must result in at least some of the SCM's being

declared down, so that none of their trunks will be available for

-121-

...... ..

Reporc, No. 4~473 Bolt Ber~inek and Newman Inc.

use. 'With SCM-based routing, on the other, hand, all th e trunks

and processor-s can st-ty on-line, asnd only tChe failed com~ponents

themselves wiill be unavailable. To see this, conzicier the

following example. Suppose a PSN is composed of t-ia SCM1's, A ana

B. SCIM A has two internode trunks, Li and 1-2, and SCM B also has

two internode trunks, L3, and L4. if PSN-baTsed routing is used,

OM the PSN appears as a si;ogle node wilth four lines. ThAt is, the

Rý PSN qppears to have four immediate neighbors. Now consider what

would happen if SCM's A and B could no longer communicate with

each other over the PCwL. Traffic arri:ving over Lior L2 could no

longer be routed out L3 or L4~, and traffic arriving over 1L3 cor L4

couirl not be routed oUt Li or L2. The routing algorithmti,

however, viould have no way to detec" (or even re-present) thi~s

fact if PSN-based routing were used. Even t'hough all four lines

would stil~l be up, it would be wroýng to represent the PSN as a

IRE single node with four immediate neighbors, sioce packets arriving

Oie; -the trunk from)ne neighbor could be sent direýýtly to only

one of the other threa. etthe routing~ algorithm wculd not be

aý.Le to 'kell which one of the ths-ee that is. It would also not

be correct- to rresenz. the PSN as having only two imm1 ediate

neighbors. The way in which a packet entered the PSN would

det~ermi-ne t%*he way in which itC could exit the PSN. and this

situation could1 nor, be c.,ptured by representing the PSN as a

a-=-- s~ngle node with a fi.xed seG of neighbors. The only way for

aSN-s ed routinga to handle this situation is either to treat(. Li

MEI

Report No. 44L13 Bolt Beranek and Newman Inc.

and L2 as down, or to treat L3 and L4 as down. This is

V. equivalent to bringing down one of the two SCM's. In general, if

PSN-based routing is used, and a PSN becomes partitioned, all but

one of the SCM's must be brought down. On the other hand, if

SCM-based routing is used, all SCM's and lines may remain up. We

conclude that in certain failure conditions, SCM-based routing

makes more network bandwidth available than does PSN-based

routing, and hence is more robust.

Another advantage of SCM-based routing is that it allows

w iore optimal assignment of network trunking than does PSN-based

routing. AUTODIN II trunking has been chosen to optimize network

performance for a particular external traffic requirement.

Traffic fror.. particular external source enters the network at a

particular SCM; traffic to a particular external destination

leaves the network at a particular SCM. In oider to optimize the

trunking, therefore, it is necessary to ensure that particular

trunks are terminated at particular SCM's. If the trunking is

assigned to terminate only at particular PSN's, with no regard

for the SCM's which actually terminate the trunks, then the

trunking cannot possibly yield optimal performance. Note,

however, that if PSN-based)outing is used, the optimal

assignment of trunks to SCM's will be defeated by the routing

algorithm. Since the routing algorithm will not be able to

distinguish trunks by the SCM's which terminate them, it will

123

Report No. 4473 Bolt Beranek and Newman Inc.

never be able to generate the traffic flows needed to best

utilize the trunking. In fant, if several lines are running "in

parallel" between a pair of PSN's, but the lines have different

SCM terminal points, the routing algorithm will have no control

at all over which packets traverse which of the trunks.

Essentially, this means that the choice among those trunks is

made at random. This sort of random choice would be expected to

produce an excessive amount of shuttling of packets across the

PCL, thereby increasing de" ays , reducing throughput, and

generally obviating the trunk assignment and sizing decisions.

The decision to perform routing on an SCM basis raises the

issues of how the intranode PCL is to be treated by the updating

protocol and by the delay measurement routines. In general, if

there are M SCM's in a PSN, each SCM should treat the PCL as if

it were M-i trunks, one to each of the other SCM's. Whenever an

SCM receives a routing update which it is supposed to forward to

its neighbors, it should send M copies over the PCL, one to each

of the othcr M SCM's. (Of course, it will also send one copy out

each of the real internode "ranks.) Presumably, an SCM receiving

a routing update over the PCIL will know who it is from, and can

send the acknowledgment (echo) back to the correct SCM. Note,

however, that the updating protocol causes every update to be

transmitted over every network line. If eaoh of M SCMt s sends

M-I copies of each update over the PCL, the PCL will have to

- 124 -

Report No. 4473 Bolt Beranek and Newman Inc.

carry M(M-1) .opies of each update. We have already computed

t. that the maximum average bandwidth needed by routing updates in

the ordinary internode trunks, where each update is transmitted

only once, is 426 bps. The bandwidth on the PCL, therefore, if

!i\we assume 4 SCM's in the PSN, is 4*3*426 or 5112 bps. This is

0.06% of the bandwidth of the PCL, which seems to be an

acceptable figure. If it is possible for a single packet on the

PCL to be received by several SCM's (i.e., for packets on the PCL

to be multiply-addressed), then only M copies of each update need

be sent on the PCL, resulting in a significant reduction in

bandwidth. Of course, these considerations are based on the

assumption that the same protocol would be used for transmitting

routing updates over the PCL as is used for transmitting them

over the ordinary trunks. It is possible that a different sort

of protocol, which is more efficient, might be devised. Devising

such a protocol would require a more detailed knowledge of the

L, PCL hardware and software than is publicly available at present.

In the absence of such knowledge, there seems to be no objection

to using the same protocol as is used on the trunks.

[1.We presume that all the SCM's within a PSN will participate

•- in a protocol which enables each SCM to know which other SCM's

are present in the node. If we regard the PCL as a set of trunks

which fully interconnect the SCM's, this protocol will be the

equivalent of a line up/down protocol. If an SCM goes down, the

-125-

. ---- . .• • _•C _ .4_- -' •. -T...

Report No. 4473 Bolt Beranek and Newman Inc.

other SCM's in the PSN will presumably detect that fact, and will

act as if their trunk to the failed SCM has gone Qown. That is,

they will generate routinig updates indicating infinite delay on

their line to the failed SCM.

Measuring the delay of packets which are transmitted over

the PCL is no different than measuring the delay of packets

transmitted over a trunk, except that transmission and

propagation delays can probably be neglected in the case of the

PCL. There is, however, the following issue., Suppose SCM A

communicates with SCM's B and C over a PCLo Presumably, there

will be a single queue in A which contains packets destined for B

and C. Since there is only a single queue for the PCL, it may

seem as if the average delay on the "trunk" from A to B should

always be identical to the average del.ay on the trunk from A to

C. However, this is not the caje. It must be remembered that an

SCM may refuse any packet 4f it lacks the resources (e.g.,

buffers) needed to process that packet. This applies to packets

received over the PCL as well as to packets received over the

ordinary trunks. When packet3 arriving over a trunk are refused,

they will be retransmitted shortly by the transmitting SCM; and

presumably, this will also be true of packets arriving over the

PCL. The delay of a packet, as measured by the delay measurement

routines of the routing algorithm, is the length of the time

interval that begins when the packet enters the SCM and ends when

126

Report No. 4473 Bolt Beranek and Newman Inc.

it has been transmitted for the final time to its next SCM. If

SCM B is shorter on buffers than SCM C, so that packets which A

sends to B have to be retransmitted several times, while packets

sent from A to C need only be transmitted once, then the average

delay on the "trunk" from A to B should be much larger than the

average delay on the "trunk" from A to C. That is, the delay

must be measured and reported separately for each "trunk."

The presence of the intranode PCL also raises an issue with

respect to the quantization of the delay measurement. If delays

are to be represented in a finite number of bits, there must be

some unit of quantization. The choice of this unit depends both

on the number of bits available for representing the delay and on

the dynamic range of the delay values. If the range of values of

delay for the PCL is very different from the range of values of

delay for the ordinary trunks, it may be difficult to choose a

quantization unit which i3 appropriate for both case-.. A related

issue has to do with the change-of-delay thresholds that are used

to determine when a measured change of delay is significant

enough to warrant creation of a routing update. It is possible

that different thresholds should be used for the ?CL than for the

ordinary trunks. It is also possible that the length of the

delay measurement interval should be different for the PCL than

for the ordinary trunks. While a determination of the

applicability of SPF routing to AUTODIN II does not depend on a

I (. -127-

S Report No. 4473 Bolt Beranek and Newman Inc.

resolution of these issues, these issues would have to be

carefully and empirically studied before SPF routing could be

implemented in AUTODIN II.

We now discuss some of the issues which are raised by the

presence of parallel trunks, i.e., trunks which connect the same

pair of SCM's. It is not yet clear whether AUTODIN II will have

such trunks, but AUTODIN II's routing algorithm ought to be able

to handle them. We will assume for the moment that any parallel

trunks are "homogeneous," in the sense of having very similar

transmission and propagation delays. In this case, the routing

algorithm ought not to distinguish the components of the

composite trunk, but rather should treat it as a single trunk,

with a single value of delay associated with it. (This is a

consequence of the fact that the best delay and throughput values

are obtained from a composite trunk by having the components

serve a single common queue.) Since each component trunk will

have its own independent error characteristics, the line up/down

protocol must be run independently over each component. The

composite trunk will be considered to be up whenever any of its

components are up; it will be considered down whenever all of

its components are down. The delay" measurement can be done just

as if there were only a single trunk. The average delay per

packet for the composite trunk will then be the weighted average

over the component trunks.

I
S~- 128 -

ij

Report No. 4473 Bolt Beranek and Newman Inc.It

{ It is possible that the error rate on one of the component

• K trunks is so great that better performance of the composite trunk

is obtained if that component is not used at all. In this case,

the line up/down protocol should bring that component down; there

[1is no need for the routing algorithm to take account of that

explicitly. If the error rate on one of the componients is not

"bad enough to bring it down, but is still significantly greater

than the error rates of the other components, the purely local

procedure of having all components serve a single queue will

ensure that more packets are transmitted by the higher quality

trunks than by the lower quality trunks, as long as there is a

limit on the number of unacknowledged packets which may be in

flight at once over a single component. (Even though routing

will not distinguish the components, each component needs to run

its own link protocol, ADCCP, independently of the other

components.) It is conceivable that the error rate on one of the

components will be so bad that that component ought not to be

used unless aMl other components have their maximum number of

packets in flight. Even in this case, however, routing ought not

to distinguish the components of the composite trunk. The

decision as to which component to use can be made much more

accurately and effectively by the transmitting node, as it

removes packets from the queue, than by the routing algorithm,

-129-

Report No. 4473 Bolt Beranek and Newman Inc.

Running the updating protocol over the composite trunks

offers no particular problem. Routing updates and

acknowledgments can be sent over whichever component is available

first; an update and its acknowledgment need not travel on the

same trunk.

If heterogeneous parallel lines are used, there are several

ways to handle them. The way which is actually chosen will

depend on the reason why the lines were installed in parallel.

Suppose, for example, that two SCM's are connected by both a

terrestrial trunk and a satellite link. It may be that the

satellite link is intended for use only as a backup when the

terrestrial link is down. In this case, the line up/down

procedures should ensure that only one of the two trunks is up at

any one time. The delay measurement routines and the updating

protocol will operate on whatever trunk happens to be up at a

given time; the routing algorithm need not be explicitly aware of

the fact that there are actually two trunks, rather than one.

Another way of using a satellite link and a terrestrial link

in parallel is to send traffic over the satellite link only if

the terrestrial link is so heavily loaded that the average packet

delay over the terrestrial link is about equal to the satellite

propagation delay. The decision as to whether to send a

particular packet over the satellite link or the terrestrial link

could be made locally by the trfnsmitting node. Again, the

130

Report No. 4473 Bolt Beranek and Newman Inc.

routing algorithm would not have to distirgiish the trunks. The

delay reported for the composite trunk would just be the weighted

* •average of the delays for the two component trunks. Of course,

routing updates should be transmitted over tihe terrestrial trunk.

Another possible way to use a satellite link and a

terrestrial link in parallel would be to use the satellite link

for those traffic flows requiring high throughput, while using

the terrestrial link for those traffic flows requiring low delay.

This scheme would require each node to run the SPF algorithm

twice, using a different topological data base each time. One of

the data bases would contain only those lines which can be used

for interactive traffic; the other would contain only those lines

which can be used for bulk traffic. If a terrestrial line and a

satellite line are running in parallel, the first data base would

contain an entry only for the terrestrial line, and the second

data base only for the satellite line. As a result, the SPF

algorithm would create two routing trees, one for each kind of

traffic. Since the two trees might not be consistent, each

intermediate node would have to determine whether a given packet

is bulk or interactive (the packets are already marked to

indicate this) and forward the packet along the corresponding

routing tree. A satellite line and its parallel terrestrial line

would serve different queues in this case. Note that, although

bulk traffic will not travel on links which are intended for

I - 131 -

Report No. 4473 Bolt Beranek and Newman Inc.

interactive traffic only, the SPF algorithm will still try to

minimize the delay (rather than maximize the throughput) of the

bulk traffic. That is, the routing algorithm will still tend to

avoid the satellite lines because of their long propagation

delays. If this is not appropriate, the delay measurement

routines can assign the satellite lines a minimal value of

ropagation de. y, instead of their true value. This would cause

more of thy bulk traffic to be routed over the satellite lines.

in fact, if the satellite lines are of higher bandwidth than the

terrestrial lines, they will produce shorter transmission and

queuing delays than the terrestrial lines, so ignoring their

propagation delays will tend tQ make them look better than the

terrestrial lines, causing more of the bulk traffic to be routed

to the satellite lines.

With this scheme, when a node generates a routing update, it

would contain information on all its lines, including both the

lines to be used for interactive traffic and the lines to be used

for bulk traffic. However, the entry for each line in the update

would have to indicate whether the line is to be used only for

bulk traffic, only for interactive traffic, or for both kinds of

traffic. In this way, each node receiving the update would know

which of its topological data bases requires updating.

- 132 -

/-

Report No. 4473 Bolt Beranek and Newman Inc.

4. A MULTIPLE PATH ROUTING ALGORITHM BASED ON SPF

4.1 The Objective Function -- Maximizing Throughput

The purpose of a routing algorithm for a computer network is

to route the traffic which is in, the network at a given time on

the set of patns which are mo3t "suitable," given uhe state of

the network at that time. A set of paths is considered most

suitable if the use of that set of paths res;AltS in the

optimization of the value of some "objective finction." The

objective function which is to be opti-mized must be chosen by the

network designers, and may be different for different network

applications. The proper choice of an objective function is part

of the design of the network, and depends on the goals and

requirements of the design. For example, a commonly cited

* objective function is average packet delay, and discussion of

routing algorithms often proceeds on the assumption that a

routing algorithm should choose the set of paths which result in

the smallest average packet delay. The objective function which

the ARPANET's new routing algorithm attempts to minimize is

something we may call "individual paclet delay." That is, the

ARPANET's routing algorithm attempts to seek the path of least

delar for each individual packet. (Minimizing the average packet

delay may result in some packets being given very long delays so

that others can have very short delays. Minimizing the

individual packet delays may result in a higher average delay,

-133-
F

Report No. 4473 Bolt Beranek and Newman Inc.

but will prevent the routing algorithm from trading off some very

short delays for some very long delays, and hence is more

appropriate for the ARPANET environment.) Most discussions of

routing algorithms (particularly distributed adaptive routing

algorithms) have tended to focus on one of these two objective

functions.

Another sort of objective function which is of importance is

throughput. The work reported herein is an attempt to develop a

routing algorithm that will maximize the amount of throughput

that a network can carry. This means that the routing algorithm

should distribute the flows in such a way as to minimize the

number of hops each flow must take in proceeding from the source

node to the destination node. The ability of the network to

carry traffic is constrained by the amount of resources, such as

link bandwidth, buffer space, and CPU cycles, that the network

has available. As more of these resources are used by any

particular source-destination flow, fewer are left for use by

other flows. Yet every time a packet passes through another link

or node, it uses resources in that link or node, so a packet

which travels 10 hops uses 10 times the resources of a packet

which travels one hop. It follows that the amount of throughput

that can be carried by the network is maximized when the number

of packet-hops in the network is minimized. (The number of

packet-hops is just the sum, over all packets in the network, of

- 134 -

/

S• , __ • _ - ---- •A

Report No. 447"3 Bolt Beranek and e,•wman InC

the number of hops each packet must travel to get from its source

node to its destination node.)

--L It is sometimes thought that throughput can be maximized by

a routing algorithm that tries to route each packet on the path

which has the maximum unused capacity. After all, to minimize

network delay, one sends traffic on the path which shows the

least delay. Analogously, one might reason, to maximize network

throughput, one should send traffic on the path which has the

maximum capacity. Such reasoning, however, is entirely specious.

Other things being equal, throughput is maximized by routing

packets on the min-hop paths. This can be seen by the following

example. Suppose there are two paths from a source S to a

destination D. One path consists of a single hop, on which there

is an unused capacity of 50 units. The second path consists of

10 hops, each of which has an unused capacity of 100 units

(restilting in an unused capacity of 100 units for the entire

path). Suppose also that we are trying to pass 40 units of flow

from S to D. If sent on the min-hop path, the flow uses only 40

units of network capacity. If sent on the 10-hop path, it uses

140 units of network capacity at each hop, for a total of hOO

units. Since the network has finite capacity, using 400 units of

capacity to handle a flow which could be handled by using only 40

units of capacity will reduce the total amount of throughput the

network can carry.

e- 135 -

_Reort No. 4473 Bolt Beranek and Newman Inc.

Another way to see this point is the following. If the

10-hop path is used to carry a single flow, its total effective

capacity is only 100 units. if, on the other hand, it is used to

carry 10 1-hop flows, its total effective capacity is 1000 units.

Given a choice of using a fixec, amount of resources to carry

either 100 units of flow or 1000 units of flow, we should choose

the latter if our goal is to maximize throughput. Again, this

implies tnat maximizing throughput is the same as minimizing the

number of packet-hops.

Hoi'ever, this does not imply that simple min-hop routing is

sufficient to maximize the throughput that the network can ca.rry.

Same particular source-destination flow may require more capacity

than can be found on the min-hop path, or some combination of

flows for which the min-hop paths are not disjoint may require

more capacity than can be found on the commuon link cr node of

their min-hop paths. So in general, maxim~izing thiroughput

requires the simultaneous use of multiple paths between each

source-destination pair. The considerations involved in choosing

the proper set of multiple paths are discussed in the next

section.

- 136 -

Rleport No. 4473 Bolt Beranek and Newman Inc.

tt 4.2 Choosing a Set of Multiple Paths to Maximize Throughput

Packets from a particular source-destination traffic flow

- ~ought to be routed over several paths simultaneously only if

thtre is insufficient capacity on the shortest (min-hop) path to

carry all of the flow. In ardor to determine a method of
I i

choosing these additional paths, we must first determine what

characteriatics we would like the paths to have. For the sake of

concreteness, let us assume that we need two paths to carry all

the traffic of some particular source-destination flow. We know

that the first path will be a min-hop oath. What characteristics

should the second path have? Since we are trying to minimize the

number of packet hops, one might think at first that the second

path should just be the second-shortest path (where the length of

a path is .ust the number cf hops in it). However, this is not

the case, in general.. It. is possible that tiLe shortest path and

the second-shortest path till have some links in common. In

particular, the traffic which is being routed over the :hortest

path may be causing some link to be fully utilized. If this

fully utilized link is also a link of the second-shortest path,

then the second-:,hortest path provides no additional capacity.

That is, the use of both paths simultaneously will provide no

more capacity than will tne -ise of the first path alone.

The problem in this scenario is that the two paths have a

common bottleneck (i.e., a node or link with no excess capacity).

-137-

. -2 : ..

1Report No. 4473 Bolt Beranek and Newman Inc.

If we want to choose a second path which provides additional

capacity for the flow, then we must ensure that the two paths are

"bottleneck-disjoint,'" i.e., that they have no common bottleneck.

Since we are also interested in minimizing the number of

packet-hops, we should choose as the second path the shortest

path which is bottleneck-disjoint with the first path. We may

generalize this as follows. A traffic flow from source S to

destination D should be routed over the set of paths p!,...,pV

such that:

a) p1 is the shortest path which is not fully utilized by

other flows

b) for all i, 1<i~k, pi+1 is the shortest path which is

bottleneck-disjoint from all the pj, j~i

c) k is the smallest number of paths which together providp

enough capacity to handle the flow.

Choosing the paths according to these constraints will tend to

minimize the number of packet-hops while providing as many paths

as are needed to handle the offered traffic, i.e., to maximize

throughput.

The SPF algorithm, in order to produce the shortest-path

tree of a network, requires as input a representation of the

network, specifying for each link (where a link is considered as

- 138 -

L
Report No. 4473 Bolt Beranek ard Newman Inc.

a unidirectional entity) the nodes which are the endpoints of the

link and the "length" of the link (which will be a constant i if

the appropriate notion of path length is number of hops). A

natural way to find the shortest path which is

bottleneck-disjoint from a given path is the follbwing. Find the

bottlenecks of the first path, and "erase" them from the

representation of the network. Then run the SPF algorithm on the

new reduced representation of the network. 1he result will be a

shortest-path tree containing the shortest paths which are

bottleneck-disjoint from the given path.

This is the basis for our proposed SPF multi-path routing

algorithm. Each link will- be assigned a fixed length of 1. If

Pi is a path between source S and destination D, the next path

Pi+! will be chosen by "erasing" from the representation of the

network the links which are the bottlenecks of p., and then

running the SPF algorithm on this reduced network.

The algorithm we propose will be a distributed one (as in

the ARPANET), in that every node will compute a complete set of

paths from itself to all other nodes. This means that every node

will have to know which links in the network are bottlenecks. A

link may be defineQ as a bottleneck if its utilization exceeds a

certain threshold. The utilization of a link can be directly

measured only by the node from which the link emanates. So each

node will have to measure the utilization of all its outgoing

- 139 -

Report No. 4473 Bolt Beranek and Newman Inc.

links and broadcast this information to all the other nodes.

That is, the routing updates of this multiple path SPF-based

algorithm will report link utilizations, rather than (as in the

ARPANET) link delays. Note that the values reported in the

routing updates are not the link lengths which are used for

computing the shortest-path tree; those lengths will be fixed at

1. Rather, the values reported in the updates are used to

determine which nodes are bottlenecks, so that paths which are

bottleneck disjoint ean be chosen.

In order to know when a set of k paths jointly have enough

capacity to handle a certain flow, it is necessary to know how

much capacity each path is providing. Again, this requires that

each node know the utilization of each link ir, the network. With

this information, the SPF algorithm is easily modified so that it

produces, for each path to a destination, the capacity which that

path provides to that destination.

It is worth noting that, in general, the set of multiple

paths from a given source to a given destination need not be

fully disjoint. This can be seen in Figure 4-I. If only the

shortest path from S to D is used (SEFD), then only 10 units of

traffic can be sent. If the non-disjoint paths SEFD and SEGFD

are used, 50 units can be sent. But if the fully disjoint paths

SEFD and SHIJD are used, only 15 units can be sent. This example

ju.t re-emphasizes the fact that what we are interested in is

bottleneck-disjointness, not full disjointness.

1 40

f7.

Report No. 4473 Bolt Beranek and Newman Inc.

V

H J

G
4 40

:1

50 105

We have not yet discussed the notion of a "bottleneck" in

Iany detail. Clearly, this notion must be precisely defined

before it%- can oe used as part of a multi-path algorithm~, and the

way in which it is defined will have an important effect on the

behavior of the routing algorithm.

Note that there will not be a-k path from S to D (Pk(SI)

I unless the previous path p SD) has a bottleneck link. For if

Pk W(SD) has no bottlenecks, then "the shortest path which it

bottleneck disjoint from thi (SD)n t will be pkelisely itself.

Furthermore, since we want to minimize the number of packet-hops,
14

If•P_(,)hs n btlncs hn"h sots ahwihi

I, boteekdson rmP_(,) il b k1SD tef

I -utemr, ic ewn tomnimz th ubro pce-os

Report No. 4473 Bolt Beranek and Newman Inc.

we do not want to use a kth path unless the first k-i paths do

not provide sufficient capacity to handle the offered flow from S

to D. It follows that we do not want to begin using a kth path

until the first k-1 paths are "fully loaded." This suggests that

we define a bottleneck as a link which is fully loaded. Of

course, we have some leeway in deciding just what we mean by

"fully loaded." A link is fully loaded if its utilization is as

high as we would ever like it to be. But this does not

necessarily mean that it is 100% utilized. We may decide, for

example, that to avoid the long queuing delays that may be

associated with links that are 100% utilized, we want to utilize

the links only to the 80% level. Then a link which is 80%

utilized would be defined to be a bottleneck. This threshold

value of utilization might also be different for different links,

depending perhaps on the speed of the link or the reliability of

the link, or any other factor deemed relevant. We will not

further discuss the issue of choosing the proper threshold value.

Clearly, a link which is a bottleneck at some time may not

be a bottl-eneck at some later time. One purpose of having an

adaptive routing algorithm is to be able to tell dynamically, in

real time, whether a given link is a bottleneck or not. Suppose

path pl(S,D) includes link 11, which is the only bottleneck on

the path. Then P2 (S,D) will be the shortest path from S to D

which does not include link 1 Now suppose that at some later

-142-

Report No. 4473 Bolt Beranek and Newman Inc.

time, linik 12' which is on both pl(S,D) and P2 (SD), becomes a

bottleneck. Then a new P2 (SD) must be defined which will be the

shortest path from S to D which does not inc" 'e either 11 or 12.

However, this is not precisely what we desire. It may be that,

in order to fully utilize 12, it is necessary for it to carry

traffic on both pI(S,D) and P2 (S,D). Yet as soon as it is fully

utilized, P2 (SD) is redefined so that it no longer includes 12.

This will result in under-utilization of 12, since traffic routed

on P2 (SD) is no longer carried on 12. As a result, 12 will

cease to be a bottleneck, and this will cause P2 (SD) to be

re-defined so that it once again includes 1 Hence the routing

algorithm, as we have described it so far, is potentially

unstable, oscillating between the needed two paths (in this

example) and the insufficient single path.

The problem is that 12 is fully utilized by the sum of the

traffic which is traveling on p, and P2, but is only partially

utilized by the traffic which is traveling on p1 alone. We would

like to be able to use 12 therefore as part of P2. If, however,

we need a third path, we do want to be sure that 12 is not part

of the third path. This suggests that the notion of a bottleneck

must be relativized to a particular set of paths. The following

definition seems to have the right properties.

Let packet p be a type i packet if and only if it is

traveling on a path pj(SD), where S is its source node, D

4 - 143-

Report No. 4473 Bolt Beranek and Newman Inc.

is its destination node, and j<i. Note that by this

definition, all type 1 packets are also type 2 packets are

also type 3 packets, etc.

Let a link 1 be a type i bottleneck if and only if it is

fully utilized, and it carries some type i traffic.

Now, instead of defining path pi+1 (S,D) as the shortest path from
S to D which is bottleneck-disjoint from pi(S,D), we may define

it simply as the shortest path from S to D which contains no type

i bottlenecks. (Of course the shortest path containing no type i

bottlenecks is not necessarily the same as the shortest path

which is type-i-bottleneck-disjoint with pi, since the latter

pafh may contain any number of type i bottlenecks, as long as

they are not in pi. However, there is no reason to consider such

paths, since they are already fully utilized). In the example

above, 12 would be a type 2 bottleneck, but not a type 1

bottleneck. Hence 12 would be included in p, and P2, but not in

p3 3 which is the desired result.

Note, however, that the routing process which runs in each

source node does not need to know the utilization of each network

link for each traffic type. It needs to know only two things.

First, it must know the value of i (if any) for which the link is

a type i bottleneck. Call this value of i the "bottleneck type"

of the link. Second, it must know the total utilization of "he

- 144 -

Report No. 4473 Bolt Beranek and Newman Inc.L

I L• link. It needs to know the bottleneck type of the link in order

I to properly define the sequence of paths p1,P2',...,pk It needs

to know the total utilization of the link in order to know how

much additional traffic can be carried by the link. But there is

no reason at all for every node to know the utilization of every

i 11 link with respect to each traffic type. Of course, we cannot

deduce simply from the utilization of a link the amount of

additional traffic which can be sent on the link; one also needs

to know the total capacity of the link. Furthermore, we cannot

assume that the capacity of a link will be a constant. The

I freason is that we may have multi-circuit or parallel links. We

L want to be able to treat a set of parallel links as a single link

whose capacity is the sum of its components. However, since some

I- of the component links may be up while others are down, the

I capacity of the comp.oite link can change in real time. We will

deal explicitly with this problem in the section on measurementV and updating.

U

- 145 -

Report No. 447 3 Bolt Beranek and Newman Inc.

4.4 The Sequence of Sub-networks and the Forwarding Problem

Based on the considerations raised in the previous two

sections, we suggest the following procedure for choosing a set

Sof paths. Let G be a representation of the network topology in

which a link is assigned the length 1 if and only if it is

operational, and is assigned infinite length if and only if it is

down. For all i>1, let Gi+I be a representation of the network

topology which assigns infinite length to all links which are

either down or which are type i bottlenecks, and length 1 to all

other links. This defines a sequence of sub-networks

GG 2,...,Gk, each of which has fewer links of finite length than

the previous one. Now we can run the SPF algorithm separately on

each sub-network, resulting in a separate shortest path tree for

each sub-network. The path from node S to node D on the tree of

G will be the shortest (i.e., min-hop) path from S to D. The

path from S to D on the tree of Gi+I will be the shortest path

from S to D which does not contain any bottlenecks of type i.

Hence, this procedure will generate precisely the set of paths

that we are interested in.

Note that the sequence of sub-networks is completely defined

by the up/down status and bottleneck type of each link. This
S~Information is determined by the node from which the link

emanates, and is disseminated to all other nodes in the form of a

routing update. Assuming a quick and reliable updating process

- 146 -

Report No. 4473 Bolt Beranek and Newman Inc.

(such as the updating protocol of the ARPAKET's routing

algorithm), all nodes will be in agreement as to the up/down

status and bottleneck type of each link. Therefore, each node

will define the exact same sequence of sub-networks GI through

G k' Now suppose that some source node S has a packet to send to

some destination node D, .fnd it has decided to send that packet

cn the shortest path which has no type i-I bottlenecks, i.e., on

•he shortest-path tree of sub-network Gi. (We will discuss in a

later section the criteria that a node will use in making such a

decision.) All it need do is put the destination node number D

and the sub-network number i in the packet header, and forward

the packet to its next hop. Each intermediate node will forward

the packet to the next node on its own shortest-path tree in

sub-network Gi. Since Gi is the same in every node, and each

node routes the packet on the shortest-path tree in Gi, we get

consistent and loop-free routing (except, of course, for small,

unimportant transients). It is not necessary, with this scheme,

to have the source node pre-specify the entLre path of the

packet.

Recall that it is necessary for each node to determine the

"highest" traffic type of all the traffic carried by each of its

links. (If j > i, we may say that type j traffic is of a

"higher" type than type i traffic.) This requires that there be

some way to determine the type of each packet. Since each packet

-147 -

Report No. 4473 Bolt Beranek and Newman Inc.

will contain in its header the number i of the sub-network in

which it is being routed, determining the type of a packet is

quite trivial. If some particular packet is being routed in

sub-network Gi, and j~i, the packet is of type j. (Note that a

packet is defined to be of type i if it is traveling on the

shortest-path tree of sub-network Gi, not if it is traveling on

the i th distinct path from its source to its destination. As we

shall discuss later, these two nations are not the same.)

It is possible that, due to a routing update which is

processed while a packet is in transit, a packet which is

supposed to be routed in G i will arrive at an intermediate node I

only to discover that there is no longer any path from I to the

destination D within C i. This situation will occur whenever

there is no path from I to D which does not contain bottlenecks

of type i-1. If I and D are disconnected in G1, then either D is

down or the network is partitioned. In this case, there is no

~way to deliver the packet, and ".t should simply be discarded.

!• If I and D are connected in some sub-network Gj, where j<i, then

S~a path really does exist. The intermediate node I will have to

Ii choose some such sub-network Gj to forward the packet on and it

Swill have to alter the packet's header appropriately.

I Considerations relevant to the proper choice of sub-network for

S~re-routed packets will be discussed in section 4.6.

- 148 -

I

Report No. 1473 Bolt Beranek and Newman Inc.

We cannot say a priori how many sub-networks will need to be

represented in each node in order to obtain a number of distinct

paths which is sufficiently large to maximize network throughput.

Yet this is a very important question, since the number of

sub-networks, as we shall see, is a large determinant of both the

amount of memory and the amount of processing needed to impleme:It

this routing scheme. Unfortunately, we know of no way to answer

this question short of doing a simulation. Of course, the number

of sub-networks can be arbitrarily limited, with a resultant

sub-optimality. Then the important question would be, just how

sub-optimal is throughout if only x sub-networks are used, for

some particular value of x? This questic.n, however, is as

difficult to answer as the other.

1

I

1- -19

Report No. 447 3 Bolt Beranek and Newman Inc.

m4.5 Measurement of Link Utilization

One might think that link utilization could be measured

Ssimply by counting the number of bits seAt over the link during a

given interval, but the situation is not so simple. We are not

interested in the utilization per se, but rather in the amount of

additional traffic that could be sent over the link. This

,e[dnds not only on the utilization of the link, but also on the

utilizations of various other nodal resources. For example,

suppose that there is a period of time during which no traffic is

transmitted on a particular link. Supposp also that during this

period, there are no free buffers in the node. Clearly, if a

packet which must be sent over the link were to arrive at the

node during this period, it could not be sent, since there would

be no buffer for it. If we are concerned vith the ability of the

link to carry additional traffic during this period, then we must

regard the link as fully loaded during the ppriod (since it can

carry no additional traffic), not as idle. Similar effects can

occur as a result of certain link level protocols. For example,

some versions of HDLC allow only eight packets to be in flight at

once on a link, so that after the eighth packet is sent, the link

is "blocked" (i.e., no more packets can be sent) until an

acknowledgment for the first packet is received. If the

acknowledgment is slow in arriving, then there may be a period of

time when the link, although not in use, cannot be used to carry

4150

Report No. 4473 Bolt Beranek and Newman Inc.

any additional traffic. Again, if we are concerned with the

ability of the link to carry additional traffic, then we must

regard the link as fully loaded during this period, not as idle.

Another example of the same pherimenon might occur when the CPU

itself is heaviU: itilized, as indicated by a long queue of

packets wait.ng for the processor. If a packet arriving at the

node will hpve a long wait before it can be tran3mitted over the

link, even though the link is not actually in use durinr that

period, then the link should be regarded as fully loaded.

The point we are making is the -ollowing. The multi-path

routing algorithm that 'e are proposing will recuire each source

node to know how much additional traffic can be sent on any given

path. This requires that each node compute, for each of its

K outgoing links, the amount of additional traffic that can be sent

on chat link. Then this information must be sent to all other

noder ±n a routing update. However, there are many factors that

control tne amount of additional traffic that can be sent over

any particiular link. The actual utilization of the link is only

orie of these factors. Other such factors include the utilization

of the CPU, the buffer space, and the available queuing s.ots.

Still other factors have to do with whether the link is blocked

by some protocol. To take all this into account, we propose the

following series of definitions:

!: I

- 15) -

Report No. 4473 Bolt Beranek and Newman Inc.

Let us say that a link 1 is idle at some particular

instant if and only if all the following conditions hold:

a) No packet is in transmission on the link at that

instant.

b) The link is not blocked by any protocol at that

instant.

c) If no packet at all is in transmission on the link

at that instant, then sufficient resources are

available such that were a packet to arrive, it

could be transmitted on the link. Such resources

may include (but are not restricted to) buffer

space, queue slots, and CPU cycles.

Let IDLE(l,t) be the amount of time during the interval t

during which l-nk 1 was idle.

Let TIME(t) be the length of interval t.

Let K(l) be the total capacity of link 1.

Then we may definu U(l,t), the utilization of link 1

during interval t, as follows:

U(l,t) 1 - (IDLE1l,t)/T1ME(t))

-152-

L
Report No. 4473 Bolt Beranek and Newman Inc.

We may now define the residual capacity of link 1 during

interval t, RESCAF(It), to be:

RESCAP(1,t) = K(1*(I-U(1,t))

The bottleneck type of link 1 is infinite if the link is

not a bottleneck. If it is a bottleneck, the bottleneck

type is the smallest value i such that if any type j

traffic was carried by link 1, i > j.

The amount of additional traffic that could have been senb

over the link 1 during the interval t is just RESCAP(l,t).

It is assumed here that each node will know the total capacity of

each of its links. (If this is not known a priori, it can easily

be determined on-line simply by transmitting a packet 3f known

length and computing the time between the beginning of

transmission and the arrival of the interrupt marking the

completion of transmission.) In the case of parallel, or

multi-circuit links, the measurement procedure is a bit more

complicated. From the perspective of routing, a set of parallel

circuits (circuits connecting the same pair of nodes) can be

considered as a single circuit whose capacity is equal to the sum

of the capacities of the individual circuits. Hence we would

like to report a single value of RESCAP which gives the residual

capacity for the entire set of parallel links. The definitions

given here are directly applicable only to single circuits, but

-153-

ReDort No. 4473 Bolt Beranek and Newman Inc.

can easily be extended to links which consist of multiple

parallel circuits. Suppose link I consists of j parallel

circuits cl,...,cj. Then the uti.lization of each circuit can be

computed separately according to the above definitions. The

utilization of the entire composite link can then be computed

according to the following formula:

U(I,t)=(U(Cl,t)*K(cl)+...•-U(ej,t)*K(c))/(K•cl3)+...+K(cj)

The remaining definitions go through as is.

There is, however, an additional complication due to the

fact that one or more of the parallel circuits may be down during

one part of the measurement interval and up during another part.

If a circuit which is down during some period of time is

considered to be idle during that period, the utilization of that

circuit miay be computed according to the above definitions.

Suppose link 1 consists of circuits cl,...,cj, where c

are up at the end of the measurement interval, but ck+1,...,c.

are down at the end of the measurement interval. Then the

utilization of the composite link' I can be computed as follows:

U(lt)=(U(cIt)*K(cl)+..'+U(c 1 't)*K(cj))/(K(cl)+...+K(ck))

Roughly speaking, this yields the ratio betueen the amount of

traffic sent over the composite link during the interval t and

the total capacity of the link at the end of that interval.

- 154 -

SReport No. 4473 Bolt Beranek and Newman Inc.

Lines come up and go down relatively infrequently. Furthermore,

once a link goes down (or comes up), we would expect it to stay

dowr (or up) for longer than the length of a measurement

interval. Therefore, we would expect the total capacity of the

link during the next measurement period to be the same as its

total capacity at the end of the current measurement period. The

proposed definition of utilization takes this into account. Of

course, this may result in a negative value of RESCAP for the

multi-circuit link. A negative value of the reduced capacity

indicates that the link was oversubscribed. It is desirable to

be able to report negative values of RESCAP. We will discuss

later the way in which such values will be used by the routing

algorithm.

In fact, we would like to be able to report negative values

of residual capacity for oversubscribed links even when those

links do not consist of multiple parallel circuits. In this

respect, our definition of RESCAP is defective, since it will

never result in a value of less than zero (except in the

multi-circuit case). While we believe that an algorithm can be

developed to quantify the extent to which a link is

oversubscribed, such an algorithm would be extremely dependent on

the oarticul3r characteristics of the network node. In the

ARPANET, we can get a measure of the oversubscription of a link

by measuring thz rate at which the node refuses packets destinea

S ! :- - 155 -

Report No. 4473 Bolt Beranek and Newman Inc.

for that link because of a shortage of resources. But this

procedure works only because of the particular effect that

oversubscription has within the ARPANET IMPs. A different

procedure miglht be needed in, e.g., the AUTODIN II PSN's; this

would have to be determined by further study.

We note that there are certain packets which are not routed

on the tree of any sub-nstwork Gi. Among these packets are the

routing updates themselves, the HELLO's and I-HEARD-YOU's used to

test the quality of the link, and non-piggybacked link level

acknowledgments. Such packets should be considered to be of type

0. Then t"he above definitions will hold as is.

The measurement procedure we have proposed is simple in

principle, and could be implemented by setting timers in

appropriate places within the code. Of course, the exact places

where the timers must be set cannot be determined a priori.

Neither can the length of the measurement interval t. We suggest

that the link utilization be measured in blocks of several

seconds. Our model is .the ARPANET delay measurement procedure,

which, every 10 seconds, determines the average packet delay over

the previous 10 second period. However, we cannot say what the

appropriate length of the measurement period within the AUTODIN

II PSN should be, nor even wh.ýt the measurement period in the

ARPANET should b, for this new kind of measurement.

- 156 -

L(Report No. 4473 Bolt Beranek and Newman Inc.

f It is important, however, that the measurement interval be long

enough so that if the average input traffic matrix does not

change, and the routing does not change, then the average

utilization should not appear to change. The measurement

interval should be the shortest interval meeting these

desiderata. Determining the optimum length of this interval in

some particular network will require actual measurements in that

network, since the optimum length depends on how the network

actually behaves.

We bave not said whether or not the measurement intervals at

all nodes should be synchronized. It is not possible to say, a

priori, whether synchronization or non-synchronization will

result in better network performance. In the ARPANET routing

algorithm, where we measure delay, we have discovered that

non-synchronized measurement intervals actually improve the

network's behavior. However, without measurement or simulation

results, we cannot say whether the same result would hold in

other networks, or whether it holds for capacity measurements as

well as delay measurements.

There is one other measurement issue of which we must take

note. This is the issue of quantization. The value of residual

capacity will have to be represented in some finite number of

bits. This implies that the measurements will have to be

quantized to some discrete value. For a given number of bits, a

-157-F:

IF
Report No.447 Bolt BeranekanNeanI.

coarse quantization allows a greater dynamic rang, of values to

be represented, but a finer quantization allows a greater degree

of accuracy. Increasing the number of bits used to represent the

values, however, leads to a greater cost in nodal memory (needed

to store the values) and in link bandwidth (since the values need

to be transmitted in routing updates). Choosing the correct

number of bits and the proper unit of quantization are

engineering problems that cannot be solved without intimate

knowledge of the network design and implementation.

- 158 -

Report No. 4473 Bolt Beranek and Newman Inc.

Im
4.6 Apportioning the Flows to the Paths

We have now discussed the procedure used for selecting a set

of multiple paths between a given source and destination

(although a detailed specification of the algorithm will not be

given until later). We have also discussed the procedure used to

route a packet on a particular path. However, we have not yet

discussed the procedure whereby a given source node determines

which of the several available paths should be selected for

routing a particular packet. That shall be the concern of the

present section.

Recall that the path-selection algorithm works by defining a

sequence of sub-networks GG2 .,G, and creating the

shortest-path tree in each sub-network. For a given source node

S and destination node D, these will be some value of k, 1<k<n

such that there is a path between S and D in all Gi, i<k, but no

path between S or D in the Gi, j>k. Furthermore, it will not be

the case in general that a distinct path between S and D will

exist in each of the Gi. For example, if the path between S and

D in Gm contains no links which are type m bottlenecks, then the

path between S and D in Gm+I will be identical to the path

between S and D in G . So the first step is to determine which

of the Gi provide distinct paths to the destination D. There are

several simple ways to do this. One method is just the "brute

force" method. For each m<k, one can explicitly trace the paths

- 159 -

Report No. 4473 Bolt Beranek and Newman Inc.

in Gm and G m+ to D at the same time, to see if any discrepancies

are detected. Alternatively, one might create a bit vector

representing the path to each destination in each sub-network.
This vector would have a bit for every link in the network. A

value of 1 for some link would indicate that that link is in the

path to that destination in that sub-network. Then one could

determine whether the two paths are distinct simply by taking the

"Exclusive-Or" of the bit vectors. A n, zero result would

indicate that the paths are distinct. As another alt' •ive,

one could make use of the following property of the

path-selection algorithm. Define the minimum bottleneck type of

a path to be the minimum value of the bottleneck type of each of

its links. (A link which is not a bottleneck at all may be

considered to have an infinite bottleneck type.) If p is a path

from S to D in G. whose minimum bottleneck type is j-1, it

follows that j>i, and that the next distinct path from S to D

will be found in G., unless, of course, there is no additional

distinct path (which will be indicated by S and D being

disconnected in G.). As we shall show later, the SPF algorithm

can easily be modified to associate with each destination node

the minimum bottleneck type of the path to it in each
sub-network. This can be used for determining the sub-network

which contains the next distinct path to that destination.

I
IL -160-

S/4

Report No. 4473 Bolt Beranek and Newman Inc.

Using one of these procedures, each source node S can

specify a sequence of k distinct paths pg1'Pg2..''Pgk to each

destination D, where pg is the path from S to D on the
1i

shortest-path tree of sub-network Gg. (We use the

double-subscript notation to emphasize that the subscript on a

path name indicates the sub-network for which that is a shortest

path. The subscript does not `,ndicate how many paths are

actually being used -- that is indicated by the subscript of the

subscript, where present. Thu3 path pi is the shortest path in

the sub-network G. It may not, however, be the ith path in use.

Where we indicate a path with double subscripts, as in pg , it is

the i th path in use, and also the shortest path in sub-network

G .) Since the routing updates indicate the amount of residuali gi

capacity in each link, the SPF algorithm can be modified (as we

K •specify later) to associate with each destination the residual

ca,.city of each path to it. This allows us to compute the

maximum amount of traffic that S may send to D along path pi

SL without overloading the path (assuming, for the moment, that no

other source-destination flow along that path will increase

[simultaneously). This is just the sum of the residual capacity

[on that path plus the amount of traffic that S has already been

sending to D on that path. That is, if the residual capacity of

the path is positive. S can increase its flow to D along that

path. If the residual capacity is negative, then the path is

Ioverloaded, and S must decrease its flow to D along that path.

S- 161

S Report No. 4473 Bolt Beranek and Newman Inc.

If the residual capacity is zero, S must not increase its flow in

the path, but it need not decrease it.

We can make these ideas more precise, as follows. We

suppose that S is constantly measuring its flow to D along the

shortest-path tree of each subnetwork Gi. Or rather, that S is

measuring its average flow over some interval t. The measurement

interval must be long enough so that the measured value of

average flow does not change unless the actual flow changes.

(That is, the effects of stochastic variations in steady-state

flows must be smoothed out. This is just the same requirement as

exists concerning the interval of measurements for the link

utilization measurements.) Let FLOW(S,D,i,t) be the average flow

from S to D along the tree of Gi during interval t. Let

MAXFLOW(S,D,i,t) be the maximum permissible flow. Let

RESCAP(S,D,i) be the residual capacity of the path from S to D in

Gi, based on the most recently received set of updates from the

links along that path. (The procedure used by a node to decide

when to send an update will be discussed in a later section.)

Then we can define:

MAXFLOW(S,D,i,t+1) = MAX(O,FLOW(S,D,i,t) + RESCAP(S,D,i))

where t+1 is the measurement interval following interval t.

The above definitirn is not entirely satisfactory as it

stands, due to the following problem. Each node in the network

, - 162-

fReport No. 4473 Bolt Beranek and Newman Inc.

will know, as a result of receiving routing updates, the residual

capacity of each link. If all nodes decide, at the same time, to

increase their flows so as to make use of that residual capacity,

then oversubscription and consequent congestion is possible.

Therefore, each source should be able to make use of only a

fraction of the residual capacity at any one time. Similarly, if

the residual capacity is negative, it is possible that the

oversubscription is due not to a large flow from one source, but

to a combination of flows from several sources. Then no one

source ought to be forced to reduce its flow by the entire amount

of the oversubscription. Rather, each source using the

oversubscribed link ought to reduce its flow by a fraction of the

oversubscription. So the proper definition of MAXFLOW is:

MAXFLOW(S,D,i,t+I) = MAX(O,FLOW(S,D,i,t) + f*RESCAP(S,D,i)

where f is the appropriate fraction. The choice of the fraction

f will depend on the probability of several source nodes reacting

at once. Furthermore, it is possible that the value of the

fraction should change with changing conditions, or that

different fractions should be used, depending on whether the

residual capacity is positive or negative. It may also be useful

to make the fraction be a function of the size of the flow, so

that flows which are already large are allowed only small

increases, while flows which are small would be allowed large

increases. When RESCAP is negative, we might want to force large

-163-

Report No. 4473 Bolt Beranek and Newman Inc.

flows to make large decreases, while forcing small flows to make

only small decreases. This procedure will tend to equalize the

sizes of the various flows, thereby bringing about fairness in

the use of the network. We do not know any a priori way to

choose the fraction. To make the proper choice, it will be

necessary to use simulation or measurement to evaluate the effect

that various choices have on the system.

Recall that the purpose of our routing algorithm is to

minimize the number of packet-hops. This implies that we wish to

fully load shorter paths before we begin to use longer paths. If

i>j, then we know that the length of the path from S to D in G.1

is greater than or equal to the length of the path from S to D in

G.. We would like to use as few of the available paths as

necessary to handle the traffic, while dividing the traffic on

those paths in proportion to the capacity available on those

paths. This suggests the following means of apportioning the

flow from S to D among the available paths.

Assume that we have available the sequence of k paths

P gl~pg2 ,...,pgk for sending traffic from S to D and that these k

j paths are the smallest set of available paths which provide

sufficient capacity to handle the offered flow from S to D,

assuming that this does not increase during the next measurement

interval. (There may, in general, be more than k paths available

at this time -- we are concerned only with the fewest number of

- 164 -

_A

V Report No. 41173 Bolt Beranek and Newman Tnc.

distinct paths which can handle our flow.) Let 1OTALFLOW(SD,t)

be the sum over all i of the values 3f FLOW(SD,i,t). Then for

"all igk such that pi is one of the available paths, let

P(S,D,i,t+l)=MAXFL.OW(3,D,i,t+1)/TOTALFLOW(S,Dt). Then let

SUMP(S,D,t+l) be the sum over all i. such that pi is one of the k

paths and i<gk of the values of P(S,D,i,t+l). Finally, let

P(S,D gk,t+I)=I-SUMP(S,D,t+1). We now have a value of P, which

must be between 0 and 1, associated with each of the k paths.

The traffic apportionment algorithm is specified as follows:

As source node S receives traffic for destination node D

during measurement interval t, it shall apportion the

traffic among the paths pg 1 Ipg 2 ,...pgk according to the

fractions P(S,D,glt),P(S,D,g 2,t)....,P(S,D,g ,t).

Traffic sha]l be apportioned in small enough unitE so

that a true simultaneous use of mfultipLe paths is

achieved. (Obviously, if traffic were apportioned in

units comparable to the average link bandwidth, then

true multi-path roufing would not be achieved -- only

one path wouli be used at a time.) However, in no case

the amount of traffic sent on a path p in an

if-ter al t ezceedI the value of IIAXFLOW(S,D,gi,t). When

Stn• -iaximum amount of traffic during the interval t has

bee.ý sent on each of th., first k-1 paths, any addiiional

traffic -"eceives for D during that interval will be

165-

Report No. 4473 Bolt Beranek and Newman Inc.

sent on path p gk When the amount of traffic r',nt on

Pgk reaches MAXFLOW(S,D,gk,t), S shall send any

additional traffic on path Pgk÷ 1 if such a path exists.

When the amount of traffic sent on pat" p k+1 exceeds

MAXFLOW(S.D~gk+I,t), S shalk begin using path p if." " Pt~lgk+2'

such exists. When S has sent the maximum allowable

amount of traffic on all availab-e paths, it shall cease

accepting traffic for D until the start of the next

measurement interval.

It is easily seen that vf the flow remains the same from one

measurement interval to the next, the scheme will result in the

full loading of the shorter paths, with the longer paths

receiving only as much traffic as cannot be fit on the shorter

ones. Furthermore, since received flow is to be distributed

according to the proportions specified by the fractions P (until

such time as an increase in flow is detected), there is a true

simultaneous une of the several paths. If the flow should

increase, the increase in flow will appear as a surge on the kth

path and succeeding paths. However, in the next measurement

interval, the increased value of the flow will be automatically

smoothed over the k paths as the updates report the increased

flow, causing the values of P to be altered. Should the increase

in flow fill the last available path (by causing one of its links

to te-ome 3 bottleneck), ar additional path will be selected

166-.

Report No. 4473 Bolt Beranek and Newinan Inc.

automatically (if any such exists) a, soon as the update

reporting the link's new bottleneck type is received. If the

flow decreases, on the other hand, the procedure will not result

.in the full loading of the shorter paths. The probable result is

that some links which are bottlenecks may no longer be so. When

the updates reporting the new bottleneck type of these links are

received, the number of available paths will decrease, until the

new flow is again matched with the proper number of paths.

There is one additional subtlety that must be mentioned. We

have spoken of the need to allow each source node to take for

itself only a fraction of the residu I capacity on a link, so as

to leave room for other sources wh- may also try to incre se

their flows over the same link at the same time. However, a

similar problem arises wi.hin a single source node. That source

node may have flows to several destinations which travel over the

same link. Nothing we have said so far prevents a source from

oversubscribing a link by trying to use the same residual

capacity for flow to several destinations simultaneously. This

can be prevented by the followi'r procedure. A table can be

maintained with an entry for each network link. At the beginning

of each measurement interval, each entry in the table is

- initialized with the value of that link's residual capacity.

multiplied by the fraction f (discussed previously). Whenever S

sends enough traffic to 1) on a path in an interval t so that it

,"_1 -. 167 -

Report No. 4473 Bolt Beranek and Newman Inc.

begins to cut into the residual capacity (i.e., 4hen it sends

more traffic on some rath Pi in this interval than in the

previous interval), it must subtract that amount of traffic from

the table entry for each link in the path. When the value of the

entry for a link becomes zero, the source acts as if the amount

of traffic sent had reached MAXFLOW(S,D,gkt). This procedure

enables the source to apportion the residual capacity on a link

among several destinations on a first-come, first-serve basis.

A simpler alternative procedure would be for each source

node to allocate a particular fraction of the residual capacity

to which it is entitled to each of its flows, with the fraction

being inversely proportional to the size of the flow. While this

would be less exact, its effect might be almost the same, or even

better, than the more complex procedure. This same simple

procedure would also work when residual capacity is negative,

except that the fraction would be directly proportional to the

size of the flow.

The flow apportionment procedurc discussed in this section

is really a sort of Slobc], long-term congestion control. It

tries to match thc amount of flow sent on each path to the

capacity of the path. This may be consider;'d to be "global"

congestion control because it is effected by each 3ource node

based on knowledge of the residual capacities of all links in the

network. It is "long-term" becauso it is based on measurements

-168-

Report No. 4473 Bclt Beranek and Newman Inc.

which are averaged over periods of' time which are long relative

to average network transit times. It is worth emohasizing that

although routing and congestion control may be con3ijdered to be

separable problems, any form of xulti-path routing whose purpose

is to maximize throughput must be integrated with global

long-term congestion control. There is. after all, no point in

L having a path selection procedure which produces an optimal set

of paths, unless the flows are adequately matched to the path

capacities. However, it must be remembered that our flow

apportionment scheme will not, by itself, prevent surges if there

is a sudden increase in offered traffic. Nor will it ensure that

a source node does not overload a destination node by sending

faster than the destination node can receive. Thus there will

still be a need for short-term local congestion control

procedures, as well as for end-end flow control.

It must be noted that there are certain sorts of packets for

which this sort of congestion control is inappropriate. For

example, to prevent deadlocks, it may be necessary to send

control packets even when the control variables prohibit sending

any more traffic. The same considerations arise with respect to

re-routed traffic (see section 4.4). One reasonable way for a

node to handle re-routed traffic iq to treat it lust as if' it

were traffic entering the network locally, distributing the

traffic according to the fractions P. However, since re-routed

S- !169 -

Report No. 447 3 Bolt Beranek and Newman Inc.

traffic is already in the network, it cannot be refused when

values of MAXFLOW are reached. When control packets or re-routed

packets must be transmitted, even though our scheme "officially"'

allows no more traffic to be sent, we suggest distributing this

excess traffic uniformly over the available paths.

We emphasize that the measurements proposed in this section

raise all the same questions with respect to quantization,

synchronization, and length of the measurement interval as do the

measurements proposed in section 4.5. Again, these are questions

that cannot be answered a prionr.

It is important to note that a given network resource may be

fully utilized either by a maximum number of bits or a maximum

number of packets. In particular, a link may be fuily utilized

by a large number of small packets, even if the total number of

bits in those packets (including overhead) is less than the speed

of the link, as measured in bits per second. The reason, of

course, is that many of the resources which a packet needs in

order to be transmitted on a particular link (e.g., buffers,

queuing slots, link protocol id numbers) ire assigned on a

per-packet basis, and are ab heavily utilized by short packets as

by long ones. The flow measurements done at the source nodes, if'

they are to be truly useful for flow apportionment and congestion

control, must reflect this fact. This can be accomplished by the

following procedure. Suppose we decide to treat a 50 kbps link

S- 170' -

Report No, 4473 Bolt Beranek and Newman Inc.

as being able to handle 100 (normalized) units of flow. If such

a link can handle either 50,000 bits per second or 100 packets

per second (regardless of packet size) before becoming saturatci,

then an n-bit packet should be counted as MAX(1, n/500) units of

flow.

We have not suggested any explicit algorithm for computing

the fractions P or for actually using those fractions to

apportion the traffic. There are many possible algorithms for

achieving these functions, and it seems to us that the choice of

algorithm would depend almost exclusively upon implementation

considerations. We point out though that we do not assume that

the apportionment algorithi will be able t, split the traffic in

the precise proportions given by the fractions. Any algorithm

for actually computing the fractions will introduce errors of

accuracy, and it seems unlikely that any algorithm for splitting

the traffic in accordance with the fractions will be able to

effect an exact split. Our algorithm presupposes only enough

accuracy in the apportionment procedure so that the shorter paths

can be fully loaded before the longer paths are used. As we

shall see in the next section, when we discuss the generation of

updates, we have considerable freedom in deciding when a measure'i

changp in the utilization of a link is significant enough to

warrant an update. Inaccuracy in the apDortionnent prnce..s may

introduce sotwe fluc'uations in link loadings, even urf,Jer

i1
S i - 171 -

Report No. 4473 Bolt Beranek and Newman Inc.

steady-state conditions. The measurement and updating process,

however, can be made insensitive to these fluctuations by proper

choice of parameters. We return briefly to this issue at the end

of section 4.7.

Report No. 4473 Bolt Beranek and Newman Inc.

1.7 The Generation of Updates

There are five situations in which a node may send a routing

update to all other nodes. These are (a) a link emanating from

the node comes up, (b) a link emanating from the node goes down,

(c) at the end of a measurement interval, the residual capacity

of one of its outgoing links has changed significantly since the

last time an update was sent, (d) the bottleneck type of one of

its outgoing links has changed since the last time an update was

sent, and (e) although there are no changes to report, enough

time has elapsed since the last update was sent that a new one

must be sent to ensure reliability. We assume that the protocol

used to disseminate the updates will be the same as the updating

protocol of the ARPANET's routing algorithm [1,2,4], which is the

only protocol known to ensure sufficient reliability for the

purposes of routing. Among the features of the protocol are the

following:

a) Eaoh upd'4tCe from a given node will contain an entry for

each l.nk emanating from the node.

b) Previous updates from a node are made obsolete by later

updates.

c) The t,'lrates pre flooded over all network links. if two

nodes are connected by a set of parallel circuits, the

update need be sent over only one of the circuits, and

- i73 -

SReport No. 4473 Bolt Beranek and Newman Inc.

the acknowledgment need not return over the very same

circuit.

d) There Aill be point-to-point positive acknowledgments

and retransmissions.

Se) The updates will be sequenced.

f) The updates will be timed out to prevent sequence number

wraparound problems.

g) Transmission of routing updates will be treated with

higher priority than transmission of ordinary data or

end-end control packets.

h) Routing updates shall be generated periodically even if

there has been no change in the values updated.

i) When a failed link is ready to resume operation, it is

held in a special waiting state for an amount of time

equal to the maximum length of the period between the

generation of two successive updates by a single node.

During the waiting period, only routing updates may be

sent over the link, and the link appears dead to the

routing algorithm. The purpose of this is to ensure

that a failed node does not rejoin the network until it

has received routing updates from all other network

nodes. This enables it to have complete, up-to-date

iJ - 474 -

• - .. . ,. . .J• •_ • • ••.••. .:•:• .. .•iL_•.•,• . .. ,.j _.i71.,i..•:- -- : -•..

I i

B k Report No. 4473 Bolt Beranek and Newman Inc.

routing information by the time it rejoins the network.

This procedure also ensures that if the network is

- partitioned into two or more segments, the segments are

not fully rejoined until after a complete set of updates

from each segment has traveled into the others.

I It is known that the SPF algorithm, in conjunction with this

r Tupdating protocol, is reliable, in the sense that it will always

be able to deliver a packet to a destination, without any

SI long-term looping, as long as there is a physical path from the

packet's present location to the destination which has the

"I capacity to handle the packet. We think it obvious that the

multi-path algorithm we have proposed, if coupled with the

ARFANET's updating protocol, will be equally reliable in the same

sense. Therefore, we shall not comment, any further on this

aspect of the updating scheme. However, the times at which

updates are generated, and the precise information carried in the

updates, can have a significant effect on the stability of the

routing scheme. In the remainder of this section, we discuss

these issues in more detail.

When a link fails, we need to generate a routing update

reporting that fact as soon as possible. If heavy flows are

[] being directed toward a dead link, congestion will surely result

unless an update causing them to be re-routed is sent as soon as

Li possible. A node indicates that one of its links has gone down

J I-. - ';75-

Report No. 4473 Bolt Beranek and Newman Inc.

by generating a routing update packet which contains no entry for

that link. Note, however, that instability can result if the

link goes up and down very rapidly for short periods of time. We

assuae that each pair of neighboring nodes runs a protocol

between them to determine whether the)ink is of operational

quality. This protocol must ensure that tne link does not flap

up and down too quickly. Furthermore, the protocol should ensure

that the link is considered down only when the network can

actually carry less throughput by using the link than it can by

not using it. (Suppose, for example, that the link's error rate

were so high that a packet would have to be re-transmitted many

times, on the average, before getting over the link. If the

retransmission process takes so long that the user resubmits hisIL
packet to the network, we have the result that Ihe network may

have been able to carry more throughput had the link been

declared down.) Also, the determination as to whether the link

is up or down must be independent of the amount of traffic

flowing over the link. In some networks, a link will be declared

down whenever a Jata packet sent over th- link is not

acknowledged after a fixed number of retransmissions. The

assumption, apparertly, is that the only reason Lhe

acknowledgment has not arrived is that the link is not of

I sufficient quality to carry it. However; it is usually true that

a node wi3l not acknowledge a packet unless there are sufficient

nodal resou:'ces tc forward the packet. As a result, a perfectly

I
~- 176-.

Report No. 4473 Bolt Beranek and Newman Inc.

9 good link may be declared down simply because there is congestion

of nodal resources. But if links can go up or down simply

because of the amount of traffic directed over them, instability

of the routing process is sure to result.

When a link comes up, we want to generate a routing update

immediately, informing all other netw4ork nodes of this fact.

However, we would like to exert some control over the way in

which the new link is utilized. Some source-destination pairs

will be able to use the new link for their type 1 flows. Others

may only be able to use it for their type 2 flows. In accordance

with the principle of attempting to minimize the number of

packet-hops, we would like to ensure that the new link becomes as

heavily utilized as possible with type 1 flows before any type 2

flows are placed on it. Then, if there is still residual

capacity in the link, we would like to ensure that it becomes as

heavily utilized as possible with type 2 flows, before we allow

any type 3 flows to be placed upon it, etc., etc. This can be

ensured via the following procedure. Pecall that the update

entry for each link specifies the residual capacity for the link

and the bottleneck type of the link. All nodes, upon receiving a

routing update, must base their computations upon the information

in that update. That is', no node may use its own local

information to alter the information in a routing update.

Otherwise, there is no way of ensuring consistent and loop-free

-177-

Report No. 4473 Bolt Beranek and Newman Inc.

routing. However, when a node generates an update to report on

the state of its outgoing links, it can put whatever values it

likes into the update, knowing that all other nodes must believe

it. Ordinarily, the values for residual capacity and bottleneck

type which are placed in an update will be the actual values

measured by procedures which we have discussed earlier. However,

in certain cases, a node may want to place values in an update

which differ from the measured values. One of these cases exists

when a link comes up.

When a link first comes up, its residual capacity is equal

to its total capacity, and it is r,%t a bottleneck at all.

However, when the network is heavily loaded, and a link comes up

which, initially, is carrying no traffic at all, there is likely

to be a mad rush for it as all nodes direct their traffic towards

the new link. This is likely to overload the link, resulting in

instability. One way of enhancing the stability (,f the scheme is

to try to 'oad the link with type 1 traffic before allowing any

type 2 traffic orn it. To bring this about, the update that first

reports the link to be up should declare the link to be a type 1

bottleneck. The next update generated by the node should declare

it to be a type 2 bottleneck (unless, of course, it has really

become a type 1 bottleneck in the meantime), Each succeeding

update should increase the reported value of bottleneck type for

that link ty 1, until the link actually does become a type i

Report No. 4473 Bolt Beranek and Newman Inc.

bottleneck for some i, or until the updated bottleneck type

exceeds the number of sub-networks. This procedure will help to

controi access to the link thereby enhancing stability. We

emphasize again thdt Qr•ly the node which generates an update has

an'y freedom as to what values of residual capacity or bottleneck

type to assign to a link. Other nodes must al'.,9ys base their

computations on the values reported in the updates.

Suppose a node detects, at the end of an interval, that the

bottleneck type of a certain link has changed. This must cause

an update to be generated, so that other nodes can be made aware

of the change. Suppose the b'ftt.eneck type has decreased. This

means that the link will be assigned infnr.ibe langch in more

sub-networks tnan previously, The limiting '-ase -)f a decrease in

bottleneck type is a link's going down, which causes it to he

assigned infinite length in every sub-network, including G,. So

the same ccnsideratios ýpply. When a decreanse in bottleneck

type i3 detected :at the end of a mesurement interval, an Up-late

should be generated iimediately, reporting the new bottleneck

type.

However, if the bottleneck type of a link increases, it will

be ausigned irfinite length in fewer sub-networks than

previously. Hence, this case is analogous to a link's coming up,

and the srme considerations apply, No matter how large the

isncrease in the link's bottleneck type actually i.3. the iairial

- 179-

Eý : e"-

I Report No. 4473 Bolt Beranck and Newman Inc.

uipdate should report ar, increase of 1. Successive updates should

continue to report ine(ea3es of 1 in the bottleneck type until

the actual bottleneck type is reached.

This Drocedure of only ilowly and gradually reporting

increases in bottleneck type may also be important to maintaining

the stability of the routing scheme. The routing scheme works by

assigning three values to each link: a length, a residual

capacity, and a bottleneck type. The levgth of a link is fixea,

and hs no relation to the amount of traffic being sent on Lhe

linx. Since thers is no feedback relation3hip between link

length and traffic load, there is no possUlle source of

Sinstability related to link length, There is, of course; a

1£eedbaek relationship between the amoun. of residuýl capacity on

a link and the amount of traffic sent over it. Fowever, it does

rot seem that this feedback relationship can, by itjelf, lead to

-serious itstability of the rcuting scheme. Changes in residual

capacity will not, by them.selves, lead to changeL in the nurmber

of. or idencit,- of, paths selectez between some given

sourc(-destinauion pair. Rather, such changes vill lead only to

incremental c-hangez in the amount of flow sent on ;he various

paths. The real potential. source of iT;5tabiiity iLes in the

feedback relationship between the bottleneck type of ý Ainz; and

th• amount of traffic routed over the link. It is the bottleneck

V types of the links which determine the number of paths that the

218

- '80• -

Report No. 4473 Bolt Beranek and Newman Inc.

path selention algorithm makes available between a given

source-destination pair. Other things being equal, an increase

ixi bottleneck type of som- link will tend tc couse a reducti-on in

tht t•uiaber of distinct available paths. Our scheme for

apportioning the traffic is supposed to fully load the shorter

paths oefore sending any traffic in the longer paths. Suppose,

however that during some interval, somc source S fails (for

whatever reason) to fuliy load its min.-hop path to destination D,

even though the total f.ow it sent to D exceeds the amot'mt of

capacity available on a s*ngle path. This fai-ire to fully load

the shorter path may result in alJ the links of that path

becoming non-bottlenecks. If th!z happens, S may find that, in

the next interval, it has only a single Uinsufficient) path to D.

It ,iil1 nov ful.Ly load the patL,, thereby causing additional paths

to be se~ectec, but this may cause an oscillation between one

path and several. We would not expect this sort of instability

to occur if the flow apportionment algorithm is working properly.

Note, however, that even if there is a problem with the flow

apportionment, the procedure of only slowly and gradually

reporting increases in bottleneck tye ewill have a significant

dampening effect on any oscillations that might otherwise occur.

This sort of problem can be regarded as a problem in

congestion control. That is, there may be inhereit stability

problems in congestion control procedures which are based on flow

-1 -

L -

Report No. 4473 Bolt Beranek and Newman Inc.

measurements. These problems will be discussed further in

section 4.8, where the congestion control properties of the flow

apportionment procedure are discussed in much greater detail.

When a node measures a significant decrease in residual

capacity on one of its links, an update must be generated and

broadcast so that the source of the flow will know to reduce the

amount of traffic sent on the overloaded path. Since a long-term

steady-state overload of a path will lead inevitably to

congestion and possible message loss, information about the

existence of such an overload must be made available as soon as

possible after the overload is detected. On the other hand, if

there has been an increase in residual capacity, we must worry

about the possibility that too many sources will try to utilize

this extra capacity at once, thereby causing an overload. We

have attempted to minimize the effect of this phenomenon by

allowing each source node to take for itself only a fraction of

the residual capacity along each path. Another means of reducing

the likelihood of overload is the following: whenever an

increase in residual capacity is "very large," report in the

routing update only a fraction of the increase. This procedure

may increase the time (by one or two measurement intervals) it

takes to fully load the link, but will make the possibility of

overload much less likely.

- 182 -

-Z7

=I

Report No. 4473 Bolt Beranek and Newman Inc.

It must be remembered that we want to load the links only to

V a certain level. If a link is loaded above that level, we want

the routing algorithm to act as if the link is overloaded, even

though it actually has positive residual capacity. For example,

if some link is 90% loaded, but we would like to operate our

links only at the 80% level, we wish the routing algorithm to

react as if the link is 10% oversubscribed, that is, as if it had

a residual capacity of -10%. The way to achieve this, of course,

is tc place a negative value of residual capacity in the update.

We have been using such terms as "very large," "significant

change," etc., which must of course be quantified when the

routing scheme is implemented. It is the values assigned to

these parameters, along with the length of the measurement

interval, that will determine the rate at which updates are

generated and broadcast. The more frequently the updates are

sent, the more reactive the scheme will be, and the more

expensive it will be (in terms of link bandwidth devoted to

carrying routing updates). Setting the parameters to make the

routing scheme sufficiently accurate, sufficiently stable,

sufficiently reactive, and sufficiently inexpensive involves

making a set of engineering trade-offs and compromises which is

specific to a particular network, and which can be made only by

the system engineers of that network. We have tried to design

the scheme with enough engineering "handles" so that such

1- 83 -

Report No. 4473 Bolt Beranek and Newman Inc.

trade-offs can be easily implemented, once the policy decisions

are made.

It must also be understood that the :.ettings of certain of

these parameters can cause interactions with other parts of the

routirg scheme. Such interactions must be very carefully

considered when tuning the parameter.. For example, one might

think that best performance could be obtained by considering

every change in utilization, no mItter how small, to be

"significant." Howevtr, as we have pointed out in the previous

section, inherent inaccuracies in t•e apportiorment algorithm may

cause small fluctuations in the utiLz'tion of a link, even under

steady-state conditions. In order t1 avoid spurious routing

changes and the resultant instab•i ities, the threshold of

significance should be chosen large enough so that reaction to

such small fluctuations does not occur. fhe parameters of one

part of the routing scheme cannot necessarily be tuned in

isolation from the other parts.

A very important consideration in the decision as to whether

our proposed routing algorithm ought to be implemented is the

amount of link bandwidth needed to carry the routing updates.

Unfortunately, there is no way to predict this exactly, since it

depends on the design of the update packets, and on the frequency

with which updates would have to be sent, which in turn depends

on the settings of the various paramters. In the ARPANET, each

184I -

Report No. 11473 Bo t Beranek and Newman Inc.

routing uodate consists of 136 bits (which includes 72 bits of

hardware framing characters) plus an additional 16 bits for eacih

neighbor of the node that generated the update. This 16-bi'.

field is needed to identify the neighbor (8 bits) and to indicat-e

the delay to that neighbor (4 bits.) Since the average

connect.,vity of the ARPANET is 4.5, this means that the average

update size is 176 bits. During peak periods in the ARPANET,

each node generates an update, kin the average, approximately once

every 38 seconds. With 65 nodes, this comes tc at -ut C3

bits/sec, or about 06% :f , 50 ktps link. In AUTODIN •i, for

example, the average size- of an update pa:.ket w'uld be larger.

One reason for this is that the average connectivity ;iou 2_ be

between 4 and 5 rather than 2.5, so each upoa-te would have to

report on a larger nutrber of neighbors. Also. rather tharn just

giving neighbor number and delay for each neighbzr, each :ipdnite

would have to have three fielas for eich neighbor, viz., nef.gh!.

number, residual capacity over the link to that neighbor, ant the

bottleneck type of' that link. Tlus instead of 16 bits per

neighbor, it is likely that at least 20 bits will be needed, and

possibly as many as 24. However, the fact thet AUTODIIN II will

have a smaller number of nodes than the ARPANEI rmay ,onipen.ate

somewhat for the larger size of the update packet. The most

serious difficulty in estimating the amount of bandwidth needed

to carry the routing updates is the fpct that it is impossible to

tell ?t present how often updates would have to be generated.

I- 85

Report No. 4473 Bolt Beranek and Newman inc.

The frequency with which updates are sent is under the control of

the system engineers, and can be tuned tn be any desired

frequency. However, the frequency of updating wculd be related

to the performance of the routing scheme, and it would not be

wise ',. set it arbitrarily. As long as the network is trunked

Aith lines whose capacity is at least 50 kbps; though, the

bandwidth requirements shculd still be modest.

M=

Report No. 4473 Bolt Beranek and Newman Inc.

4.8 More on Stability: Basing Congestion Control on Flow

Measurements

In this section we discuss a problem with the flow

apportionment or congestion control scheme that is integrated

into the multi-path throughput oriented routing algorithm. The

problem has to do with the proper way to set MAXFLOW when there

is a change in the identity of a path (in a particular

sub-network) to a particular destination. More generally, the

problem has to do with the potential instability of any

congestion control scheme which is based on measurements of link

utilization.

Recall that there are two different sorts of measurements

that must be made by the nodes, each requiring a "suitably long"

measurement Tnterval for the purpose of obtaining a smoothed

result. Each source node must measure the amoant of traffic it

sends to each destination node, along the shortest-path tree in

each of the sub-networks. Also, each node must measure the

residual capacity of each of it's outgoing links. Let us assume

for the moment that all measurement intervals (i.e., for both

kinds of measurements) in all nodes are synchronized (and of the

same length). Furthermore, we will assume that there is a period

of time, which we may call an "adjustment interval," between

successive measurement intervals. That is, rather than one

measurement interval beginning at the precise moment the previous

"- 187 -

Report No. 4473 Bolt Beranek and Newman Inc.

one ended, the two successive measurement intervals will be

sepa-ated by an adjustment interval during which no measurements

are made. The adjustment interval should be long enough for all

updates generated by the various nodes at the end of a

measurement interval to be received at all other nodes and for

the SPF and CAA computation to be fully run on all updates. That

is, the adjustment interval corresponds to the transient period

f during which routing changes are taking place. Note that,

barring topological changes, no routing changes will take place

during a measurement interval, but only during the adjustment

interval. Since topological changes are relatively rare events

(i..e., the average number of toplogical changes during a

nmeasuremenr interval is much less than one), we will ignore them

for the tioment. We may assume then, that at the end of a

measurement interval, we ýan speak of both "the old path" and

"the new path" for each source-destination flow in each

sub-network. The ol.d path is the orie that was used during the

previous measurement interval. The new path is the one in use at

the very end of the adjustment interval, i.e., during the next

measurement interval.

At the end of each adjustment interval, changes must be made

to the values of MAXFLOW and to the apportionment fractions P.

The valuts of P are fully determined by the values of MAXF,.OW, so

tie nced cnly consider the procedure used for changing the value

-188-

Report No. 4473 Bolt Beranek and Newman Inc.

of MAXFLOW, Recall that each source maintains a value of
MAXFLOW, as well as a value of measured FLOW (in the measurement

interval immediately preceding the adjustment interval), for each

path (i.e., for the path in each sub-network) to each

destination. In considering whether to alter the value of

MAXFLOW for a path in a given sub-network to a given destination

at the end of the adjustment interval, there are five cases to

consider:

1) There has been no change during the adjustment interval

in the path to that destination in that sub-network

(i.e., the path is exactly the same, and there has been

no change in the residual capacity along that path), and

the most recently measured value of FLOW is the same as

the previously measured value (in the penultimate

measurement interval). In this case, there is no change

to the value of MAXFLOW.

2) There has been no change in path, but the amount of FLOW

measured in tae previous measurement interval is

different from the amount measured in the interval

before that. This requires a recomputation of MAXFLOW,

according to the formula described in section 4.6.

After all, if the residual capacity of' the path has

remained the same, but the FLOW has incieased, Lhen some

other flew along that path must have decreased. In

-189 -
ir

Report No. 4473 Bolt Beranek and Newmar Inc.

effect, this is an increase in residual capacity, and

should result in an increase in MAXFLOW. If the

residual capacity has remained the same, but the FLOW

has decreased, then some other flow must have increased,

and the value of MAXFLOW should be reduced.

3) There has been no change in the identity of the path

(i.e., the path contains all the same lines and noces),

but there has been a change in the residual capacity of

the path. Then clearly, a new value of MAXFLOW must be

computed according to the formula given in section 4.6.

U) There is a new path to that destination in that

sub-network, and the path is fully link-disjoint from

the old path. Thus the new value of MAXFLOW should be

set to a fraction of the residual capacity of the new

path. Note that the fraction of the residual capacity

should not be addea to the previouly measured FLOW, as

in cases 2 and 3 above. The previously measured FLOW is

not relevant since it was measured along a completely

different path. Another way to put the point -- the

previously measured flow from that source to that

destination along the new path is zero.

S5) There is a new path from the source to that destination

in that sub-network, but it has some links in common

- 190 -

Report No. 4473 Bolt Beranek and Newman Inc.

with the old path. In this case, computation of the new

value of MAXFLOW is somewhat more complex. In the case

where the path has not changed during the adjustment

interval, we can define the "available capacity" for a

flow to be (a portion of) the residual capacity of the

path plus the throughput of the flow during the previous

measurement interval. If t..e path has changed, however,

it will contain some links which, in the previous

measurement interval, carried no traffic of the flow.

In this case, the available capacity of the path cannot

be computed simply from the residual capacity of the

path and the previous amount of flow. Rather, the

available capacity depends upon whether or not the link

of least residual capacity on the new path is also on

the old path. If not, then the value of MAXFLOW must be

set to a fraction of the path residual capacity, without

adding in the throughput of the previous measurement

interval. However, if the link of least residual

capacity is on the old path, it does not follow that

MAXFLOW can be set to a fraction of the residual

capacity plus the old flow, because this value may

exceed the amount of residual capacity on (at least one

of) the links which were not on the old path. Hence the

proper value of MAXFLOW must be computed as follows.

Let LI be the set of links which are on both the new and

-1I

f 191 -

Report No. 4473 Bolt Beranek and Newman Inc.

the old paths. Let L2 be the set of links which are on

the new path only. L-et RC1 be the minimum residual

capacity of all links in LI, and let RC2 - the minimum

residual capacity of links in L2. Let f be the

fraction used for allocating a portion of the residual

Scapacity of a path to a particular flow. Let OLDFLOW be

the ,roughput of the flow in question during theI previous measurement interval. Then let

MF1=OLDFLOW+f*RC1, and let MF2-:Rf*C2. Then

MAXFLOW=min(MF1,MF2). -Tnhs computation ensures that the

setting of MAXFLOW is determined by the link of leas,,

available capacity, not the link of least residual

capacity. The computation, however, is somewhat

cumbersome. While computing path residual capacity can

be done quite efficiently with a simple modification of

the SPF algorithm, there does not seem to be any such

efficient means of computing path available capacity.

The reason is that "available capacity" is not solely a

function of the residual capacities on the links, but

rather depends also upon the source and destination

nodes.

So we see that setting MAXFLOW to J.ts precise optimum value

can be rather expensive, even if we assume synchronization of all

measuremet intervals. The situation is further complicated if

- !92

I Report No. 4473 Bolt Beranek and Newman Inc.I
there are topology changcs during a measurement interval (as

opposed to during an adjustment interval). Topology changes may

cause path changes in the middle of a measurement interval. If

this happens, the notion of' "ld path," i.e., the path that was

used during the previous measu-ement in"erv'l, is not
well-defined. The value of the flow me'surement taken ,ring the

previous interval wili not correspond to any one po.th, so the

proceaure suggested above in 5) will not be appllocble, (We

will, of course, be able to measure the fjow on the new path, but

this measurewent will not cover a fill measurement interval, ind

hence may not be suitably smooth.) This pruolem can be

alleviated to some extent by delaying "link coming up" reports

until the next adjustment interval. However, reports of links

giing down can never be delayed, so the problem will always exist

to sIm" extent. Since link failures are relatively rare

occurrences (relative, that is, to the length of a measurement

interval), this problem should not be serious, is long as the

values of MAXFLOW eventually converge to reasonable values. A

short period of inaccurate flow control (and consequent path

apportionment) is not a major problem, as long as the scheme can

recover.

There are a number of technical reasons why synchronization

of all measurement intervals is not desirable. With

synchronization, all routing "work" (i.e., the sending of updates

193-

Report No. 4473 Bolt Beranek ano Newman Inc.

and the SPF computations) is done in e sh,,t int',rvnl 'Ly all

nodes. This can be expected to create a la?,F. Fpýke in the

utilization both of line and node bandwidth, which will certainly

degrade retwork performance. Furthermore, synchironiza'.n • ýf

measurement intervals may be undesirable fr)m a co;trol-theoret-ic

point of view. This turned out to be the case fo- the AFPA7ET

routing algorithm (see BBN Report No. 3940, Appendix Aý, where it

was determined that synchronizetion of the mansurent,?nt intervals

would seriou3zy decrease the stability o; the routing aOgorithm.

If a similar result hulds for the multi-path algorithm,

synchronization would not be acceptable. Ist without

synchronization, the problem we are diseussing would arise not

only when there are topological changes, hut also whenS',e-" there

i- any path change.

We see then, that che sort '..f -origestion contr-Ž we have

inl.egratcd irn;o the multi-path algorithm, and consequently, the

sort of flow apportionment we have proposed, are useful only in

conjunction with routing algcrithms that have the foLlowirn

property: changes in the identity of th- path (or patns) being

used to carry traffic: from, a given sGurce to a given destination

are infrequent when compared to change, in the residual capAoity

along the same DLth. Si-ntce the delay-oriented routing algorithm

of the P.R.ANET may not have this prope-t)', the si.npler congestion

control scheme cescribed in chapter 6 r.,ay be mere {f-fective ijr

194

R eport No. 4473 Bolt Beranek and Newman Inc.

comDination with delay-criented routing. (It may seem odd that a

simpler .3ch c- e arI. under certain circumstances, be more

e'Lective than a more uomplex one. However, this is just a

oonsequence of the fact that the more "moving parts" a mechanism

has, ths more likely something is to break. Unfortunately, this

rmaxim hai not becn as well appreciated by software designers as

oy hardware d&signepis.) On the other hand, congestion control or

flow apportionment based on link ut-ili'ation seems excellently
suited f-r comination with fixed routing (either deter-iini31tiAc

routing or virtual circuit routing). With fixed single-path

resting, there is no need for flow apportionment, but there is

still a need r-t match the throughput sent over a path to the

capacity of the path, i.e., to exert congestion control. With

fixed ,:•ulti-pa;h routing, our scheme :an be used not only for

congestion control, but also for variable flow apportionment.

SLppose, for example. that some network has three fi -ed paths

between a given pair of nodes. Presumably, the paths are

ont imized for a certain peak period of flcv betwe en ;he nodes.

During ron-peak periods it may be possible to obtain better

performance oy using fewer of the paths (i.e., by using only the

znhorter paths). The flow apportionment procedure we proposed for

use with the multi-pnth acaptivs algo rith shoold be zeU-sulted
for this purpose.

--V. - 195 -

Report No. 4473 Bolt Beranek and Newman Inc.

What about the adaptive multi-path throughput-oriented

routing algorithm itself? Does it have the property needed for

it to work well with the congestion control and flow
apportionment procedures that have been integrated into it? Does

it ensure that changes in the identity of a path are infrequent,

relative to changes in the residual capacity of an unchanging

path? It seems that it does, or at least can be made to do so,
with proper engineering and tuning. If we ignore topological

changes for the moment, the only events which can cause path
changes are reported (in routing updates) changes in the

bottleneck type of a link. It does seem that such changes can be
made to be ,nuch less frequent than simple changes in the residual

capacity of a link. To see this, let us look at the various

scenarios under which the bottleneck type of a link can change,
and see whcit effect such change5 can have on the identities of

the paths betweon ai given pair of nodes.
For~ i st scena-i c-, etu

- - of, -"ot..eneck type change, let us

sIppoc. that 'ink ! which was previously underloaded, i, now

fully -1o-ded with traff c from sub - .. "et-kS G G Thati
-ink . has cheanged from not being a boet_-eeck at all to being a

type i borttIenreck As a rt--•'u. l ir k I will be removed from all

sub-jetworks :f index i•I or greater. However, ex hypothesi,

rink I h.. beer, rnarr-yln- no traffic frcm ar;y oaf thoc'

5rb-.networks. :- in •ub-networks of Ind ex greater than i, there

Ile.•

I- !9

Report No. 4473 Bolt Beranek and Newman Inc.

may be a change of identity in the path between a certain pair of

nodes, but only if there is no traffic between that pair of

nodes. That is, any.new path which forms between nodes S and D

in sub-network j, j>i, will be a path consisting only of links

which previously carried no flow at all from S to D in

sub-network j. Therefore, MAXFLOW can be correctly and

accrately computed on such paths simply by taking a fraction of

the residual capacity of the path, without having to add in any

previously measured fiow. In sub-networks of index less than or

equal to i, however, there is no change in path identity at all,

but only a change in residual capacity (from positive to

non-positive). Hence, MAXFLOW can be correctly and accurately

computed according to the formula given in section 4.6.

2) For our second scenario of bottleneck type change, let

us suppose that link 1, which was previously underloa.ed, is now

overloaded. It is fully loaded with traffic from sub-networks

GI.... ,Gi, but also carries traffic in sub-network G., j>i; for

an overload. Note that, even though the link is fully loaded

with type i traffic, our definitions make it a type j bottleneck.

The present scenario reduces, therefore, to the previous one, and

MAXFLOW can be accurately computed according to the formula in

section 4.6. If, on the other hand, we had decided to declare

link 1 to be a type i bottleneck, it would be removed from a

sub-network in which it is carrying traffic, namely Gj. That

-197-

Report No. 4473 Bolt Beranek and Newman Inc.

would give rise to the inaccuracy in the computation of MAXFLOW

that we have been discussing, and hence is best avoided. If the

link were declared to be a type i bottleneck rather than a type j

bottleneck, all type j flow on the link would cease. In effect,

the type j flow would be bumped by the type i flow. This is not,

however, desirable. Flow typas are not priorities, and ought not

to be confused with priorities. Declaring the link to be a type

j bottleneck will allow the type j flow to remain, though of

covrse the type i and the type j flow will be scaled down when

the network nodes receive a routing update reporting that link 1

has negative residual capacity.

3) For our third scenario of bottleneck type change, we

suppose that link 1 was previously fully loaded with traffic in

GI,.' .Gi, and now remains fully loaded, but carries traffio in a

sub-network Gi, j>i. It may seem as though this scenario is

impossible, After all, if the link was previously a type i

bottleneck, and j>i, tne link is not used in G., and hence ca:not

carry any type j traffic. However, there is a race condition to

consider. Consider a link 1 which emanates from node N, and

consider three successive measurement intervals. At the end of

the first interval it is underloaded. At the end of the 3econd

interval, it is a type i bottleneck, and node N generates i

routing update u reporting l's change in bottleneck type. Once

the update u is processed by node N, link 1 will be removed from

- 198 -

_ -h. ... ii=........ ••

Report No. 4473 Bolt Berarek and Newman Ini.

G ,, after which N will not carry any type j traffic ovr 1.

(Note that even during a trans.ýent oe,'iod when 9 has processed u

but other nodes have not yet done ,o, tk-.ere will be no type j

traffic sent over 1, since each node makes an independent

determination as to which packets to route :,iyer which of its

lines.) However, there will generally be some lag, tirpe between

the moment when N generates update u and the moment when its

processing of u is complete. This lag time will occur at tne

Sbeginning of the third measureLent interval. During the lag

time, it is possible for node N to send type j packets over link

1. This may result in l's becoming a type j bottleneck. Since 1

was previously a type i bottleneck, making it a type j bottleneck

will cause it to be reinserted in sub-networks Gi+,...,G G+ it

should be clear that the presence of this race condition can lead

to an instability, where link 1 is alternately removed from and

then reinserted into G. after successive measurement intervals.

This instability could result in inaccurate -.omputation of

MAXFLOW in Gj, and these inaccurncies might propagate over a longI period of time. Therefore, it is very important to prevent this

race condition from occurring. This is not difficult to do; in

fact, we can think of three different methods of eliminating this

race condition:

a) Through the proper assignment of CPU priorities to the

measurement, update generation, and path-computation

[C, - 199-

-K7

Report No. 44*13 Bolt Berarnek and Newman Inc.

.Tfocesses, cne can make it impossible for any packet

forwarding (i~e., routing table look-ups) to be done

betweer. the time a measurement interval ends and the

t••me the node ge*ierat-rn, the update- (if an update is

generatsf) complete_3 its processing of thac update.

b) If an update is generated at the erd of a measurement

Jnteri'al, the start of the next interval can be delayed

un.il the node generntinK the update has fully processed

c) Once a node has generated an update declaring a link to

be a type i bottleneck, 1t5 me3surement process can

igncre the presence of any type j packets, knowing that

the presence of the packets is due to the race

condition.

.Which of these three methods ought to be used depends

largely on titplemtnation considerations; any would do the job

adeqcately. If we ccn assume t'at one of these methods will be

impleffiented, we may regard the scenario under discussion as

impossible, and hence as not contributing either to instability

or to the inaccurate computation of MAXFLOW.

4) In ovr fourth scenario of bottleneck type change, a link

which w,.s formerly fully loaded with traffic from, sub-networks

IA,

Report No. 4473 Bolt Beranek and Newman Inc.

G ,...,Gj is still fully loaded, but only with traffic from

sub-networks Gi,...Gi, i<j. That is, its bottleneck type has

decreased from j to i. As a resultl the link will be removed

from sub-networks Gi+I,...,G . However, as in scenarios 1 and 2,

the link is only removed from sub-networks in which it carries no

traffic. Hence no inaccuracy is introduced into the computation

of MAXFLOW, ano no instability can result.

5) In our fifth and final scenario of bottleneck type

change, e link which was formerly a bottleneck now ceases to be

one, i.e., now becomes underloaded. Suppose link I was formerly

fully loaded with traffic from sub-networks GI,...Gi, but that it

is now underloaded. If the line is restored to all the
sub-networks Ci+,,...,Gn at the same time, inaccurate values of

MAXFLOW may be computed for all these networks. Furthermore, all

these sub-networks may try to route traffic over 1, resulting in

a sort of mad rush for the additional capacity. This issue is

discussed in section 4.7, where we propose to continue reporting

the link to be a type i bottleneck for a period of time after it

actually ceases to be one. This will allow the link to be

re-loaded, if possible, in those sub-networks in which it is

already being used. If this is done, then there will have been

no path identity changes, but only path residual capacity

changes. If, after a period of time, the link has not become a

type i bottleneck again, it can be reported to be a type i+1

- 201 -

Peport No. 4473 Bolt Beranek and Newman Inc.

bottleneck, whether it actually is or not. If it does not really

become a type i+1 bottleneck, after a certain period of time, it

can be reported to be a type i+2 bottleneck, etc,... If this

procedure is followed, the link is revived in only one

sub-network at a time, which limits tne possible effects of

inaccuracies in the computation of MAXFLOW. Each time the link

is revived in a sub-network, enough time is allowed before

reviving it in the next sub-network to allow it to become fully

loaded in the former sub-network. As a result, the number of

path identity changes should be much less than the number of path

residual capacity changes.

We began by noting that our proposed flow apportionment

procedure is suitable only if path iderntity changes are

relatively infrequent when compared to path residual capacity

changes. We then discussed the situations in which path identity

changes can occur, and showed tnat I.he situation is either very

infrequent (either because it is naturally infrequent, like

topology changes, or because we explictly slow the reporting of

the changes, possibly making the report unnecessary), or it

cannot give rise to problems of stability or problems in the

computation of MAXFLOW. We may therefore conclude that the

multi-path throughput oriented routing algorithm possesses

sufficient stability to enable it to interact well with the flow

apportionment procedure. Of course, there are additional

- 202 -

Report No. 4473 Bolt Beranek and Newman Inc.

questions that still need to be answered. Even though path

identity changes may be infrequent, they do introduce inaccuracy

into the flow apportionment procedure, and it would be

interesting to determine just what effects this has, and how long

it takes the system to re-converge to a more optimal routing

pattern. This should be investigated by simulation.

I.

L
Report No. 4473 Bolt Beranek and Newman Inc.

L

4.9 Specification of the Routing Algorithm
L

Suppose a routing update is received which specifies that

either the residual capacity or the bottleneck type of some link

has changed. Then there may be a Thange in the set of paths used

for a particular destination, or in the fractions P used to

apportion the flow. In this section we describe the way in which

a given source node must react upon receiving such an update.

First, we define some notation.

Let F(A,i) be the fathEr of node A in the shortest-path

tree of sub-network G..

Let D(A,i) be the distance to node A along the tree of

Gi•

Let C(A,i) be the residual capacity of the path to node

A on the tree of Gi.

Let LINK(A,B) be a toclean which is true just in case A

and B are neighboring nodes. Note that LTNK(A,B)

implies LINK(B,A). If A and B are neighbors, then AB

will denote the link which carries traffir. from A to B.

Let TREE(AD,i) be a boolean which is true just in case

link "B is In the tree of Gi.

- 20L• -~

Report No. 4473 Bolt Beranek and Newman Inc.

Let SUB(B,N,i) be a boolean which is true just in case N

is in the sub-tree of B in Gi. Note that SUB(B,B,i) is

identically true.

Let L(A,B,..) be the length of link AB in Gi. If AB is

down, or if it is a type i-I bottleneck, then L(A,B,i)

is infinite. Otherwise, L(A,B,i) = 1. Note that if

LINK(A,B) is false, L(A,B,i) is undefined for all i.

Let RC(A,B) be the residual capacity of link AB. This

is undefined if LINK(A,B) is false.

When an update is received for link AB, we must see whether

L(A,B,i) has changed for any i. A change in L(A,B,i) indicates

either that link AB has gone down, has come up, or that its

bottleneck type has changed. Then we must run a modified

incremental SPF algorithm for each sub-network G. for which1

L(A,B,i) has changed. This modified SPF algorithm is ouite

similar to the ordinary incremental SPF algorithm that runs on

the ARPANET. The only modification concerns the method of

computation of the values of C(A,i). which are not used in the

ARPANET.

The main data structure of the SFF algorithm is LIST. Each

element of the LIST is an ordered quartet of the form

<SON,FATHER,DISTANCE,CAPACITY>. Each such quartet represents a

particular path to the node SON. The penultimate node on this

-205-

Report Noo 4473 Bolt Beranek and Newman Inc.

path is FATHER. The distance from. the source node to SON is

DISTANCE, and the unused capacity of that path is CAPACITY. If Q

is a quartet, we use the notation SON(Q), FATHER(Q), DISTANCE(Q),

and CAPACITY(Q) in the obvious way to refer to particular

elements of the quartet Q.

We first define the function ADDLIST(Q) which takes as

argument a quartet and performs LIST manipulation according to

the following algorithm:

If there is no quartet Q' on LIST such that SON(Q')=SON(Q),

then Q is placed on LIST.

If there is a quartet Q' on LIST such that SON(Q') = SON(Q),

then if DISTANCE(Q') > DISTANCE(Q), Q' is removed from the

LIST and Q is placed on it. Otherwise the LIST is left

unchanged.

The purpose of this function is to ensure that only one path to a

given node is on the LIST at any one time, and that it is the

shortest path so far encountered.

Now the SPF algorithm itself:

1. If no tree exists, ADDLIST(<SOURCE-SCURCE,O,INF>), where

SOURCE is the node in which the algorithm is running,

and INF is a representation o' infinity. Go to step 5.

I - 206 -

IJ 2

Report No. 4473 Bolt Beranek and Newman Inc.

2. If the change in length was to link AB, then

a. If TREE(AB,i), then set

DELTA = L(A,B,i) - the old value of L(A,B,i)

b. If not TREE(AB,i), then set

DELTA = D(A,i) + L(A,B,i) - D(B,i)

If DELTA > 0, the algorithm terminates.

3. For all N such that SUB(B,U,i), set D(N,i)=D(N,i)+DELTA

4. if DELTA > 0, then

for each N such that SUB(B,N,i),

for each K such that LINK(K,N) AND NOT SUB(B,K,i)

if D(N,i) > D(K,i) + L(K,N,i)

then

ADDLIST(<NK,D(K,i)+L(K,N,i),min(C(K,i),RC(K,N))>)

If DELTA < 0, then for each N such that SUB(B,Ni),

for each K such that LINK(N,K) AN£ NOT SUP(B,K,i)

if D(K,4) > D(N,i) + L(N,K,i)

then

ADDLIST(<K,N,D(N,i)+L(K,N,i),min(C(N,i),RC(K,N))>)

5. If the LIST is empty, the algorithm terminates.

Otherwise, remove from the LIST the quartet Q with

smallest DISTANCE. Place SON(Q) on the tree so that its

father is FATHER(Q). (Exception: if SON(Q) SOURCE.

place SOURCE on tree as its root.),

i[- 207-

Report No. 4473 Bolt Beranek and Newman inc.

Sat D(SON(Q),i) = DISTANCE(Q)

C(SON(Q)?i) = CAPACITY(Q)

5. For each neighbor N of SON(Q),

a. If N is already on the tree, and

D(N,i) < D(SON(Q),i) + L(SON(Q),N,i),

then do nothing, and continue with the next

neighbor.

b. If N is already on the tree, but

D(N,i) > D(SON(Q),i) + L(SON(Q),N,i),

then remove N from the tree and go to step c.

c. ADDLIST(<N,SCO(Q),D(SON(Q),i) + L(SON(Q)',N,i)4

m~n(C(SON(Q)1,i), RC(S0N(Q),N>)

7. Go to 5.

After running the SPF algorithm for each sub-network where

it is necessary, we must check to see whether that update

reported a change in the value of RC(AB). If ss, then for each

sub-network G such that TP.EE(A,2i) the following Capacity

Adjustmet.t Algorithim (Algorithm CAA) must be run:

fi the new valoe of RC(A,B) is less thea, the old value,

Ithien f3r a1 nodes N such that SUB(B,Nii, Set

- 208 -

Report No. 4473 Bolt BEranek and Newman Inc.

Si If the new value of RC(A,B) is greater than the old

value, then

1) set C(B,i) RVin(C(A.i), RC(A,B))

2) Put B in a FIFO stack

3) If the stack is empty, the a!go it4 hr. terminates.

OOtherwise, remove the first element from the

stack, and call it "N',

L4) For each node K such that LINK(N 1() and

SUB(B,K~i.')

a) set C(K,i): inin(C(N,i), PC(NK))

b) Pu• K on the stack

5) Go to 3.

It is worth pointing out the reason why algorithm CAA is so munh

simpler if the residual capacity of a link decreases than if' it

increases. if "QC A.B) decreases. then we have two Cases to

Sconsideio E4ither A3 is now the link of least residual capacity

r on the path to a destination D, cr not. so, the new value of

C(D,i) is equal to RC(A,.. i not. then the value of C(D,i)

remainns uncb-nged If RC(AB) increases, we nave two different

cases to consider. Either AB was not previously the link of

least capacity on the path to D, or it was. In the former case,

C(D,i) remains unchanged. in the latter, case, some :,thec link

may now be the link of least capacity on the path to D. In order

to determine the new value of' C(D,i) we must determine which link

-209-

Rep ort No. 4 4473 Bolt Beranek and Newman Inc.

this is, which 4S the cause of the additional complexity of the

algorithm.

Note that, in general, a single update packet will contain

updates for several links, viz. all the links which emanate from

the node which sent the upda'te. Although several link updates

may be blocked together for the purposes of the updating

protocol, for the purposes of doing the routing computation each

link update must be considered as a separate and independent

update from any other link updates which may happen to be in the

same packet. The SPF and CAA algorithms must both be run, if

necessary, for the first link update before any processing of the

second link update is done.

After the CAA and/or SPF algorithms have been run, the set

of paths available to a given destination may have changed, and

the maximum amount of flow which can be sent to destination D on

the tree of Gi may have changed. Thus the values of MAXFLOW and

the fractions P will have to be recomputed, as described in the

previous section. It is possible that due to these

recomputations, one will find that more flow has already been

sent to a Darticular destination in a particular sub-network than

is allowed. (in general, the arrival of updates will be

asynchronous with respect to the boundaries of the measurement

interval which a source node uses to measure and control its flow

to the various destinations within the various sub-networks.) In

- 210 -

AReport No. 4473 Bolt Beranek and Newman Inc.

that case, one must not send any more flow on that path until the

next interval begins. Conversely, the value of MAXFLOW to some

destination in some sub-network may increase due to an update,

even if the source node has already sent the (previous) maximum

amount '.f flow during the current interval. In this case, the

source can resume sending until the new value of MAXFLOW is

exceeded. Of course, as soon as the fractions P are recomputed,

the flow apportionment algorithm should begin to use the new

fractions for apportioning the flow.

If there is no path to destination D in Gi, then D(D,i) will

be infinite.

In general, a single routing update packet will contain

entries for several links. Note that the CAA algorithm at the

SPF algorithm must be run for each link individually, before

proceeding to the next,

As we have discussed previously, it may be desirable to

associate with each destination node the minimum bottleneck type

of each path to it. This facilitates the selection of the next

distinct path to the destination. Let BOT(AB) be the bottleneck

type of link AB. Let MINBOT(D,i) be the minimum bottleneck type

of the path to D in Gi. Now suppose an update is received which

indicates that BOT(AB) has changed from i to j. Then, for each

sub-network k in which L(A,B,k) is now finite, one must run an

- 211

Report No. 4473 Bolt Beranek and Newiman Inc.

algorithm which is obtained from algorithm CAA by substituting

BOT for RC and MINBOT for C. In addition, the SPF algorithm must

be modified so that the LIST elements are quintets, whose fifth

element is tho minimum bottleneck type of the path represented by

the quintet. These values would then be manipulated in exactly

the same %jay as the values representing residual capacity.

It may seem that there is quite a lot of computational work

to do each time an update is received. However, it must be

remembered that the SPF algorithm is quite efficient

computationally, in that it does a lot of work only if there is a

large routing change to be made, which will happen only if the

link for which the update is received has a large sub-tree in the

shortest-path tree. In a highly connected network, the

shortest-path tree will generally be quite shallow, and the

average sub-tree size will be very small (in a 40-node network

with a connectivity of 4, the average sub-tree size is only about

= 0.5), therefore, the amount of computational work needed to

process each update will also be quite small.

•Ii

Report No. 11473 Bolt Beranek and Newman Inc.

4.10 The Sub-Optimality of Incremental Changes

An important feature of our proposed routing algorithm is

that changes in the loadings of the various links cause only

incremental changes in the routing of the flows. As the

network's residual capacity increases or decreases, traffic is

diverted incrementally so as to make best use of the network's

capacity. However, there is no wholesale global rearrangement of

the flows, and this can cause sub-optimality in some situations.

This point can be illustrated by means of an example.

Consider a 10-node ring network with contiguous nodes numbered

consecutively. Suppose that each link has a capacity of 10 units

of flow, and that node 2 is sending 10 units of flow to node I on

the path 2-1. Now if node 3 should desire to send 10 units of

flow to node 1 also, our routing scheme will force it to use the

path 3-4-5-6-7-8-9-10-1 (assuming no other flows). This routing

is optimal for the offered flows. Should the flow from 2 cease,

our routing scheme would divert all the flow from 3 to the path

3-2-1, again achieving optimality. Suppose, however, that after

this happens, the flow from, 2 resumes. Our routing scheme will

put it all on the path 2-3-4-5-6-7-8-9-10-1, which is extremely

sub-optimal. That i., our routing scheme picks the best path for

a new flow, assuming that the other flows remain fixed. It will

not, however, rearrange the already existing flows. To achieve

optimality, the flow from 3 must be diverted from the shorter

-123-

Report No. 44 7 3 Bolt Beranek and Newman Inc.

L

path to the longer, so that the flow from 2 can use the shorter

path.

A possible appro3ch to this proble,. rrighit oe the foll,-wing,

Suppose that, irste3d o.0 caiputing RESCAP, and hetce MPXFLOW, cn,

the basis of residual :,,oacity UPC), we compute it or. the basis

of another quantity, ?NC, where

1!'(A.R) = RC(A,B) -k*(HODS(S,B) -

k being a constant (say), S tŽeing the node doing the computation,

A and B being neighboring nodes, and HOPS(S,B) being t.e number

of hops on the path between S end B. Now, the further away a

particular l.ink is, the less capacity it appears to have.

Consider how this would affect trh,: example above. Suppose k 5I units of flow, and that we allow P link to handle 80 flow units

before becoming a bottleneck. Suppose alo that at some given

time, link 2-1 arnd link 3-2 are . and node 3 wishes to send

80 units of traffic to node 1. RC(3,O) will be 80, bit RC'(3,1)

will be only 75. Hence node 3 can send only 75 units of traffic

on the path 3-2-1, and will have to send the other 5 units on the

other path. Now if node 2 has 80 units of traffic to send to

node 1, ii will be able to send 5 units on path 2-1 (since it

seen link 2-1 as having 80 urnits of czpýAcity, only 75 of which

are in use), and will have to send 75 units on the longer path.

If link 2-1 is carrying 75 units of the flow fr-,m 3 and 5 units

- 214 -

77

Report No. 4473 Bolt Beranek and Newman Inc.

of the flow from 2, node 3 will have an RC' value of -5, which

will force it to reduce its traffic on the path 3-2-1 by 5 units.

This will allow node 2 to send an additional 5 units of traffic.

Eventually, the flow 2-1 will be able to force the flow 3-1 off

the link 2-1 entirely, forcing it to take its alternate route,

and thereby converging to optimal routing (eventually!).

Unfortunately, there are several serious problems with this

scheme. Note that, with this scheme, ncde 3 will never be able

to send 80 units of flow to node 1; the scheme will only allow a

full 80 units of f)ow to be sent between nodes which are

immediate neighbors. Furthermore, if link 3-4 breaks, node 3 may

not be able to send any flow to node 1; node 2 can lock out the

flow from node 3. Another problem is that the scheme is wasteful

of space, since it can force capacity to be unused whenever there

are a significant number of multi-hop flows. This is not a good

property for a routing algorithm which is expected to maximize

throughput.

Clearly, this scheme needs two additional features before it

can become acceptable. It needs a notion of fairness, so that

all flows wilI be allowed some capacity, even if they must travel

many hops. Also, it needs some sort of triggering mechanism, so

tl.at it is not calledI into play unless it is actually needed. At

present, these are still unsolved problems.

-215-

Report No. 4473 Bolt Beranek and Newman Inc.

4.11 The Delay Issue

We have not taken account at all of the issue of network

delay. Our proposed routing algorithm has as its goal the

maximization of throughput, with no considerations of delay. We

realize though that what is really needed is an algorithm for

maximizing throughput subject to the constraint that the delay or

some function of the delay be kept below a certain threshold. We

expect that the delay constraint can be met simply by setting the

bottleneck threshold appropriately. That is, if delays are too

high, the bottleneck t -shold can be lowered. This would lower

the total utilization of the network, hence dec.easing the delay.

We expect that the threshold can be tuned to give an acceptable

value of delay, so that no real-time delay measurements will be

needed. If this turned out not to be the case, link delays could

be measured dynamically, and the bottleneck threshold could be

altered in real-time to reflect changing delays. This would

affect only the update generation process, leaving all the rest

of our' proposed routing algorithm unaffected.

- 216 -

1 Report No. 4473 Bolt Beranek and Newman Inc.

5. CONGESTION CONTROL METRICS AND THEIR APPLICATION TO RAFT

Computer networks have had the luxury of technical evolution

during a decade of relatively modest user demand. This fact has

allowed network engineers the luxury of concentrating their

efforts on the design of the basic packet-switching service as

opposed to the design of special procedures intended to assure

adequate performance during protracted periods of high resource

utilization. As the ratio of users to available resources grows,

however, this situation can be expected to change. That is, as

average resource utilization increases, the possibility arises in

any network that a set of resources will become congested to the

extent that network performance will be affected.

In order to clarify this point, consider the difference

between a network in which the average resource utilization J3

' 10% and a network in which it is 70%. Both of these networks

have excess capacity. Despite this fact, it is highly Probable

that stochastic fluctuations in offered traffic will frequenti:J

produce very long queues in the network whose average utilization

is 70%. These queues may result in unacceptable delays; i. the

queues grow so long as to exhaust the buffer space in smre nodes.

packets may have to be discarded and retransmitted, thereby

lengthening the observed delays and wasting resources.

Throughput will, therefore, aiso suffer. While congestion can

, (and will) occur in a network where average resource utilization

2

S217 -

Report No. 4473 Bolt Beranek and Newman Inc.

:;s 10%, the frequenc~y of its occurrence will be much less and the

scope of the problem nor. nearly so zevere. L

The problems arising from increased network demand must be

addIressed in several ways. First and foremost, of course, one

must have sufficient resources in the network. Secondly, network

resources must be utilized intelligently. In this context,

"irtelligent use" is that which max-imizes the Drobablity that

performance criteria are, on the average, met. Finally, there

must be several procedures designed to ensure reliable service in

the face of the enhanced possibility of resource congestion and

consequz-nt degraded service. That is, there must be algorithms

within the subnetwork which are snecificallyy intended either to

prevent resource congestion from occurring or to respond in a

.iutary manner to su'2h cong 'tion. There has therefore been

increased attention paid to the development of congestion control

procedure. for packet-switching netwo 1,,s. These procedures are

designed to control the flow of traffic into the network so as to

prevent or eliminate resource congestion.

Since congestion concrol procedures control the rate at

which traffic 1s allowed into a network, the designers of such

-roceduree wal - a fine line. If insufficient controls are

applied, then congestion may not be eliminated; if controls are

aDp1ied too libe r ally, then Loo much traffic may be kept out of

the network. UHn°f-rlunatelv, given the complex nature of computer

=Z2i

Report No. 4473 Bolt Beranek and Newman Inc.

networks and the fallibility of engineers, not all congestion

_- control algorithms will do what is claimed for them, and this

introduces the possibility for disaster. The conclusion is that

the development of congestion contrcl procedures requires the

associated development of a methodclogy for the evaluation of

those procedures.

In the following, we will attempt to define precisely what a

congestion control procedure is. We also define criteria, or

metrics, against which to measure the performance of specific

algorithmn:,. Finally, we will apply these metrics to evaluate the

algorithm which has been proposed to effect congestion control in

AUTODIN II.

5.1 Definition of Congestion Control

While congestion control procedures are designed to manage

resources during periods of high demand, not all procedures so

designed are properly classified as congestion catrol

procedures. In particular, both flow control algorithms ard

routing algorithms might also be designed so as to manage

resources in order to produce an acceptable response dur.ni,

pericds of heavy utilization. For this reason, it is easy to

confise the respectivo functions of routing, flow control and

congestion control. In the case of flow control and congestion

control this confusion is rampant. We propose there-ore to

I - 219-

Report No. 4473 Bolt Beranek and Newman Inc.

discuss congestion control by describing how it differs from

routing and flow control.

Flow control refers to a set of algorithms which operate in

the communications subnetwork in order to maximize the traffic

that can be passed from a source to a destination. In this

context, source and destination may refer to either a pair of

hosts or a pair of exit and entry nodes. A classic situation

requiring flow control is that in which a high speed host

attempts to send packets to a low speed host. If the output rate

of the source exceeds the ability of the destinaticn to receive

traffic, then traffic may back up into the network. Ultimately,

significant amounts of traffic will be lost. The grc-wth of

queues and the need to retransmit packets will produce excessive

delays. Since resources are used by packets that are eventually

discarded, the total end-to-end throughput will be reduced. in

order to remedy the situation, a flow control algorithrl might be

implemented to manage the rate at which traffic is offered by the

source in such a way that throughput is maximized without

exceeding the destination's capacity to receive data.

Adaptive routing algorithms typically operate in the

subnetwork in order to redirect flows in such a manner that

network performance, as measured by some objective function, is

improved. For example, if a routing algorithm is intended to

maximize throughput, then the algorithm will direct a flow along

2•0 -

Report No. 4473 Bolt Ber'anek and Newman Inc.

the path that uses the smallest amount of network resourceF. if

a single such path is not adequate, then the aIZorithm may split

the flow among several paths. As the volume :f the flow changes,

then the paths may change too. In any event, a routing algorithm

which maximizes throughput dynamically will allocate resources so

as to allow the network to carry as much offered traffic as i.

possible.

Congestion contrcl, unlike flow control, does not expliitly

operate on an end-to-end basis and, unlike throughput-oriented

adaptive routing, does not have the capacity to redirect specific

flows in order to provide them with additional resources.

Rather, congestion control refer!. to the collection of algorithms

in - network which reduce traffic when some critical resource in

the communications subnetwor. is congested. Thus the function of

ccngestion control is the inverse of the function of

t1hroughput-oriented routing. Yhereas the latter may Increase

resources used by a given traffic flow in order to allow an

increase in the flow's volume, congestion control reduces volume

in ordet- to red-.ee the demand of a flow Tor one or more

resources.

It is misleading to attempt to rank routing, f13w controi

and congestion control in order of importance or to imagiue that

there is a definite chronological order in which each algorithm

is invoked by the network software. For example, it is sometimes3

-221 -

Report No. 4473 B3olt Beranek and Newman Inc.

stated that flow control establishes and maneges an end-to-end

flow. Then, as the flow increases, routing is supposedly invoked

in or-der to distribute the flew ov'er the critical subnetwork

resources. Finally, according lo this scenario, congestion

control is invoked when routing can no longer find additional

reEources over which to distribute the traffic. This scenario

may be simple enough to indicate the functional differences among

congestion control, flow control and routing. However, the true

behavior of packet-switched networks is considerably more

complex. Thus, the attempt to assign a chronology to routing and

congestion control is a bit like assigning a chronology to the

initial chicken and egg. For moderate to nigh uiilizationa both

congestion control and throtvhput-oriented rou.iting may operate

simultaneously, the former :Itempting to reduce resource

utilizlt, on by throttling traffic while the latter seeks

additioonal resources fo- thQ offered flows. In general, it may

be ýsaid that there are complex and s;Abtle interactions among

routing. nongestion contr-,i and flow control. These i:nteractions

are represented s,.hcmatielly in Figire 5-1.

5ecau~e of the compl_,x natuto of the;se interactions, in the

following mnaterial we will consider congestion control apart from

its interactions with other network protocols.

-222-

-4 i

report No. 4473 Bolt Beranek and Newman Inc.

FLOW CONTROL

MAXIMIZE
ACHIEVABLE

THROUGHOUT
FOR EACH USER

MINIMIZE MAXIMIZE
TRAFFIC IN INETWORK

2EXCESS OF CAPACITY

CONGESTION THROUGHPUT ORIENTED
CONTROL ROUTING CONTOL

Figure 5-1 Network Control Interactions

422I

Aif

S1- 223 -

Sf

Report No. 4473 Bolt Beranek and Newman Inc.

.5.2 Types of Congestion Control Algorithms 4

The primary conclusion of the previous section is that

congestion control attempts to throttle traffic in order to

prevent or alleviate resource congestion in the communications

subnetwork. Within the boundaries established by this

definition, there are any numoer of approaches by which

congestion control may be effected. De:;pite these options, a

large number of schemes have features in common. This, in turn,

allows one to develop something of a taxonomy for congestion

control.

One way of classifying congestion control algorithms is

based upon whether they are designed to respond to congestion or

whether they attempt to prevent congestion from arising in the

first place. Algorithms which are based upon the former strategy

we term curative. Curative algorithms are motivated by two

related philosophies. First, any algorithm has an associated

overhead. The algorithm introduces control traffic, consumes CPU

cycles, requires memory for programs and tables. Curative

algorithms seek to minim:.ze this overhead during periods in which

it is deemed not to be necessary. Additionally, since congestion

control algo.-ithms attempt to control the rate at which traffic

is delivered to the network, there is always the possibility that

an algorithm which anticipates congestion will throttle traffic

needlessly. Curative algorithms refrain from controlling traffic

- 224 -

Report No. 4473 Bolt Beranek and Newman Inc.

until congestion is detected. They are based upon a conservative

attitude toward the application of controls and a liberal

attitude toward the risk of congestion.

Algorithms which adopt a conservative attitude toward the

risk of congestion by attempting to prevent its occurence, we

term preventative. Such algorithms are clearly based upon the

assumption that network performance is so seriously affected by

congestion that it is appropriate to constantly carry whatever

overhead is required in order to prevent congestion from arising.

Proponents of such algorithms maintain that there is no real cost

associated with overhead which is carried during periods of

non-congestion since, by definition, the network has ample unused

capacity during such periods.

Congestion control algorithms also may be classified

according to the manner in which congestion is measured. Some

algorithms, which we term implicit, do not directly attempt to

measure resource utilization in order to detect congestion.

Instead, they infer information about resource congestion

indirectly from some global network state, such as the total

number of packets in circulation. Other algorithms are based

upon the view that congection is a local phenomenon. (This does

not, of course, preclude the possibility that congestion may

simultaneously occur in a number of locations.) Such algorithms

attempt to directly measure congestion by monitoring resource

-225-

Report No. 4473 Bolt Beranek -nd Newman Inc.

utilization, queue lengths, etc. For this reason we call these

algorithms "explicit".

It is possible to map a number of widely discussed

congestion control algorithms into these categories (see Figure

5-2). For example, isarithmic algorithms place a limit on the

total number of data packets whicn can be in the network at any

given moment [1]. Simply put, these algorithms assume that

congestion is a global phenomenon that can be prevented by

limiting the total number of packets in circulation. The input

buffer algorithm imposes a limit on the fraction of buffers in a

node's buffer pool that input traffic can occupy [2]. These

algorithms are preventive and explicit. The Delta-K algorithm,

designed for AUTODIN II, measures queue lengths in the network

and acts to throttle traffic if a qaeue exceeds a given length

(see below for further details). Thus, Delta-K is explicit and

curative. The congestion control procedure designed for Cyclades

is similar to Delta-K [3]. Finally, the congestion control

procedure described in Chapter 6, in which controls are, in a

sense, always present but adjusted according to the measured

state of each node and link, is preventive and explicit. It will

be observed that we have had difficulty finding an entry in the

curative/implicit box.

j• - 226-

Report No. 4473 Bolt Beranek and Newman Inc.

I

TIMING
CURATIVE PREVENTIVE

:FORM

SSARITHMIG
IMPLICIT

INPUT BUFF. LIMITS

CYCLADES SPF BASED

EXTLICIT CONGESTION
CONTROL

DELTA-K (SEE CHAPTER 6)

Figure 5-2 Types of Congestion Control Procedures

-227 -

Report No. 4473 Bolt Beranek and Newman Inc.

5.3 Congestion Control Metrics

tNo congestion control algorithm can be evaluated in the

abstract. Ir deter.iining the efficac-y of an algorithm, one must

clearly :onsider rhe characteristics of the specific network

environment in which it resides. These characteristics include

th- jther network procedures arid protocols, the network topology

and traffic profile, the specifics of the nodal software and such

user-specified requirements as throughput, delay, and security.

Despite the fact that congestion control algorithms reside in a

variety of environments, a systematic approach to the evaluation

of such algorithms is not precladea.

One can take a number of approaches to the evaluation of

congestion control algorithms. Suppose one is given a particular

network design and a traffic profile and is asked to examine the

suitability of a particular congestion control procedure. A

common approach is to simulate the network and to calculate the

throughput, average packet delay, and packet loss rate for

several multiples of the given traffic matrix. The numbers

produced are taken to be measures of the congestion control

procedure's performance. Thtle this approach results in a nice

"hard" answer, it suffers in severa3 respects. First, one is not

really given a detailed enough picture to understand one's

results. If the perfornmance of the algorithm was poor, one wants

to know what about the algorithm resulted in poor performance.

228 -

Report No. 4473 Bolt Beranek and Newman Inc.

Perhaps the congestion control algorithm was not at fault at all;

perhaps routing and/or flow control caused the observed

performance. Furthermore, one's assumptions about network design

and traffic are frequently wrong. If the algorithm produced

adequate performance under sDecific conditions, can one safely

conclude that it should be implemented? Finally, througnput and

delay do not completely describe all that a user may demand froim

congestion control; there may be other system requirements.

Thus, without discounting the value of throughput. delay,

and data loss rate as measures of system performance, we also

seek to develop other measures against which to evaluate

congestiov control procedures. It is our hope that a methodology

which is based upon these perfcrci'ance criteria will allow one to

examine proposed procedures at a detailed level, will address the

""why" behind system performance, and will accommodate a less

restricted definition Gf system performance.

While it would appear to be desirable to develop

quantitative measures for system, performance, most of the

performance metrics which we are propozing are not inherently

quantifiable. In that sense, they are to be understood as

providing a methodology rather than a set of cookbock formulas

for congestion control evaluation. In the following we will

describe nine performance criteria. This list, although

comprehensive, is by no means complete,.

if - 229 -

Report No. 4473 Bolt Beranek and Newman Inc.

5.3.1 Sensitivity to Traffic Patterns

Congestion control techniques are generally developed with

certain assumptions about the network traffic. Sometimes these

assumptions are not explicitly stated. For example, consider a

congestion control procedure which measures resource utilization

at an intermediate node in order to determine whether some source

node should be throttled. When congestion is detected, an update

is generated and sent to a host which must subsequently reduce

the rate at which it offers traffic. The update may be received

seconds after the congestion was detected. For this procedure to

make any sense, it must be assumed that the conditions which gave

rise to the original congestion would have persisted had not some

action been taken. In addition, it must be assumed that the

consequences of the action can be predicted. In order for these

assumptions to obtain, the network traffic must be described by a

function which is reasonably well behaved. This assumption

underlies many, if not all, curative procedures.

Frequently, even stronger assumptions are made by the

designers of congestion control procedures. For example, it is

common practice to assess the behavior of network protocols using

some (analytic or simulation) model. it is very convenient for

the developer of this type of model to assume that packet lengths

and interarrival times are exponentially distributed, Assume

that an engineer fine tunes a congestion control procedure using

-230.-

IL

Report No. 4473 Bolt Beranek and Newman inc.

such a model. Clearly, in doing so, he assumes that the

exponential distributions used to model network traffic provide a

reasonable approximation to that traffic.

Given the fact that a network designer always must assume

something about the traffic on the network, the question emerges

as to the sensitivity of the performance of the congestion

control procedure to deviations from the assumed traffic profile.

Can an isarithmic algorithm give acceptable performance on a

heterogeneous network? Will an algorithm wlI1h gave good

performance on a simulated network with exponentially distributed

packet lengths give adequate performance on a real network in

which packet lengths have a higher variance? Will a procedure

which performs well under steady-state conditions be acceptable

if the traffic profile has a marked time dependency? If a new

application is added to a network, resulting in an immediate

increase in traffic, and if there is a certain lag time before

new resources can be added, can the algorithm manage traffic in a

graceful manner?

The importance of these questions can be better understood

if we consider the di.Lference between a terminal-traffic-oriented

computer network and a telephone network. The number of

subscribers on telephone networks is so great that the law Of

large numbers produces a very regular and predictable traffic

profile on all trunks. On the other hand, the number of computer

-231-

SReoort No. 14"'17'3 Dolt Beranek and Newman Inc.

network users i3 orders of magnitude less. For example, the

-• A)UTODIN IH TAC will allow a maximum of 256 terminal users: art

..N__ E P will service a maximum of 63 terminal users. The

number of TA's (or TPs)g _is very small. Thus, for

transaction-oriented computer networks one might expect flcws

which are highly unstable relative to telephone network traffic.
* U's 'he.c iz

(Of course. computeir networks which handl a large amount of file

___ transfer data can be expected to produce much more stable

traffic;)

From the above we conclude that an appropriate metric

against which to measure 6 congestion control algorithm is the

degree to which the performance of that algorithm is affected by

a changing traffic profile.

5.3.2 Effectiveness

Effectiveness measures the ability nf an algorithm to

achieve maximum reduction of congestion while minimizing the

number of distinct flows (or users) to which controls are

applied. An effective algorithm is one which seeks to reduce the

rate at which traffic is allowed to enter the ne'twork only so

much as to eliminate congestion.

There are a number of features which an effective congestion

conL-ol technique must possess. First, the technique must be

able to determine which network resource is, in fact, congested.

-- 2 -

Report No. 4473 Bolt Beranek and Newman Inc.

It must determine how much excess traffic there is and act to

reduce traffic by that amount. This process is akin to a

surgical procedure in which just the right amount of traffic is

to be removed. A congestion control scheme that holds

utilization too low may be as bad as one that allows utilization

to be too high. The problem with allowing resource utilization

to remain too high is that this can result in low effective

throughput and high delays. But keeping utilization too low can

have axactly the same effect!

Another aspect of effective congestion control is the

ability to throttle only Lhose flows whicn are causing the

congestion. This nay be a fairly complex task. Assume that a

given flow A is cauJsing a ncde to become congested. As a result,

tr.-ffic from flows B anti C which transit the congested node back

"up into neighboring nodes. Becaose of this, the neighboring

nodes also cocnest. In the absence of the original flow A, no

node would be :ýcngested. Upon observing the network, however,

one finds several nodes congested with traffic flows A, B, and C.

Clearly, one want:, to throttle traffic A and not B and C. An

effective cor.qestion control scheme will throttle only tho3e

flows cau.7ing the congestion ind not those flows which are beihg

affected by the conge.ticn.

Related to the requirement that an effective congestion

control technique not throttle non-cffending flows is the

-233-

-4

Report No. 4473 Bolt Beranek and Newman Inc.

requirement that it not excessively interfere with such flows.

One way in which a congestion control technique can cause such

interference is by creating excessive amounts of control traffic

in the congested area of the network. An excessive amount of

control traffic can cause nodes which neighoor a congested node

to themselves congest. This can happen in two ways. Control

traffic emanating from the congested node and forwarded to

neighboring nodes can inflict an excessive processing burden on

those nodes, causing them Lo congest. In addition, the

requirement that a congested node produce control traffic might

increase the utilization of the congested node so that it --w has

even more trouble accepting traffic from neighboring nodes. In

both cases, the actions of the congestion control procedure have

caused congestion to spread. In doing so, the procedure has

interfered with traffic not implicated in the original

congestion.

5.3.3 Fairness

Fairness measures the ability of a congesti3n control

algorithm to apportion resources among users in such a way that

all users receive equal treatment. This concept is, as state6,

vague in that b- "equal" and "user" are undefined. The

definition of "equal" and of "user" are policy decisions which do

noL proceed primarily from technical considerations. The most

general statement that one can make is that a "fair" set of

- 234 -

SI L

jReport No. 4473 Bolt Branek and Newman Inc.

network procedures might guarantee users equal throughput or

equal delay response.

Implementing fairness, as defined above, may be extremely

difficult. In order to simplify ou; discussion of the problem,

we assume that a congestion centro2 procedure acts so as to allow

fair access to critical resources. Thijs me,-.ns that when it is

apparent that some partio2ular resource cannot service all users

who require it. service, the resourcc is equitably 3pportioned

among these user,.

There are a nu;-nber of alternatives from whi.ch a nretwork

planner might choose a definition of equitable 3pportionment. He

might Jecide that resources should be dii;,d.:d equally among

hosts. Thus, if there are ten hosts on the network, then each

host would be entitled to one tenth of each, critical !esource.

As an alternative strategy, the designer might decide tha,

critical resources should be apportionec etaally an:ong terminal

users. in this case, traffic from a host with 83 users would be

guaranteed four times the resources as would traffic from a host

with twenty users. As a thi.-d strategy one wight choos• to

apportion :ritical resources in accordance with demand. 1r. thi•

case, a user (person, host, n-ý sou)-e node) steging -o input

traffic at rate 4r is apporti.oned -our tines tL°e resouirce3 as is

a user seeking to input at rnte r, As another :6nd simplir

a-ternative, resources might be al!e . evely irong source

I- 3

Report No. 4473 Bolt BeraneK and Newman Inc.

nodes. As a variant on all of the above strategies, one might L

choose to apportion resources among flows (user-user, host-host,

or node-node).

Assum;ng one has opted for one of the above alternatives,

the definition of fairness is still incomplete. It remains to be

decided whether or not resources are to be divided on a global or

local basis. Assume, for example, that critical resources are to

be divided fairly among users (however user is defined) and that

a specific source node, whose resources are demanded by traffic

from user s A and B, congests. A local definition of fairness

would require that the resources of the node in question be

shared equally between users A and B. A global definition of

fairness would require mo;le info.-mat,,:' -han kh: 3tate ot h

congested node. For example, u'ser P_ might have no otner flow. in

the network other than that which is passing through ti.e

congezted node, while user A ir.ight have a very large number of

other flows. In ihis case, global fairness would -equire that A

be tbiroti.led morc then o.

ha-.ing defined just w.at fairness iL, bringing it about may

ve quitt a cowrmlex taýsk. Assume th at resources are to be

ailo-:.zýed among hosca according to demand. This presumnably means

that each host is to be guaranteeJ a percentage of each critical

resource in crcpor'ion to the amount of traffic it offers i.o the

network. Unfortunately, this may be difficult to bring about.

-236-

-.
-C.-

Report No. 4473 Bolt Beranek and Newman Inc.

The congestion control technique must be able to measure exactly

what each user's demand for each resource is. The users and

resources may be dispersed geographically. The demand from any

particular user is subject to stochastic fluctuation. Even

worse, the demand from some user may appear to be low as a result

of some previous decision of the congestion control procedure.

That is, if some user had been previously throttled, his measured

input rate may appear to be low. But this result is an artifact

of the congestion control procedure.

A factor which can further complicate a definition of fair

resource allocation is priority. Some networks assign a priority

level to each data packet. The intent of this assignment is that

traffic of a given priority be given preference for resources

over traffic of lower priorities. In designing a fair congestion

control scheme one wants to ensure that higher priority traffic

is throttled only if congestion cannot be alleviated by

throttling only lower priority traffic. This may be difficult to

accomplish. Assume that there are two priority levels, and

suppose that some node congests. In order to accomplish our

"surgical procedure" of congestion control, we presumably must

separate the amount of congestion due to low priority traffic

from the amount of congestion due to high priority traffic and

throttle each separately.

2

- 237 -

Report No. 4473 Bolt Beranek and Newman Inc.

It will be observed that there is a relationship between

fairness and effectiveness. It will be recalled that one of the

features of an effective algorithm is that only the offenaing

flows be throttled. Exactly which flows are "offending" is

something which clearly cannot be decided apart from the

particular network's definition of fairness. For example, assume

that a given node can handle 80 units of traffic and tha" it is

offered 5 units from source A and 80 units from source B. In

this case, we have a total of 5 units of offending flow. How

those offending units a,de to be eliminated is something which can

only be determined via fairness considerations. As a simple

rule, one can say that effectiveness deals with the quantity of

flow., throttled while fairness has to do with the particular flows

which are chosen for throttling.

5.3.4 Stability

Stability refers to a congestion control scheme's ability to

offer steady state, smooth service to u3ers under conditions in

which the offered load to the network is smooth. This definition

will be made more precise in what follows.

In general the burstiness with which packets are delivered

to a destination is greater than the burstiness with which they

are offered to the network. Assume there are packets which are

being sent from a source A to a destination B and that these

-238-

Report No. 4473 Bolt Beranek and Newman Inc.

packets are being delivered to the network at a constant rate.

The variance of the interarrival times at the network is

therefore zero. If one measures the variance of the interarrival

times of these packets at destination B, one will probably

measure a non-zero variance.

There is one primary reason for the increased variance of

packet arrival times at B. Traffic belonging to the flow AB is

contending for resources all along its path with traffic from

many other flows. The volumes of these other flows are subject

to stochastic fluctuation. Thus, all along their path, packets

from AB will periodically be blocked while packets belonging to

other flows are serviced. This causes some packets from AB to

bunch up and increases the distance between other packets.

Despite the fact that the sender has offered smooth input, the

network appears to be delivering an erratic output stream.

It is not inconceivable that the performance of the

congestion control algorithm will itself affect the smoothness of

the service offered by the network. As an extreme case, consider

a group of users who wish to offer traffic at a steady rate

during a period of generally high network utilization. The

congestion control algorithm, detecting congestion, acts to

severely throttle traffic. The throttling is effective; the

congestion is reduced. The congestion control technique now

detects the absence of congestion and acts to reduce the controls

+1¶ - 239 -

Report No. 4473 Bolt Beranek and Newman Inc.

on the input traffic. This reproduces the original congested

state. The process continues ad infinitum. In this case, the

congestion control algorithm has responded to a situation in

which user demand was constant, although heavy, and provided

extremely erratic service as measured by the ability of the

network to accept traffic and by the manner in which it delivers

traffic. Such an algorithm would score low when evaluated for

stability.

It is probably the case that no congestion control algorithm

will be able to provide totally smooth service during extreme

congestion. Thus, a measurement of an algorithm's stability must

be done under varying network conditions. In general, a stable

algorithm would induce no instability during periods of

non-congestion and only a modest amount of instability during

periods of congestion. During periods of extreme congestion, the

technique may provide bursty service although this burstiness

must be kept within bounds.

5.3.5 Responsi~eness

Responsiveness measures the ability of a congestion control

technique to track and control congestion. A "responsive"

congestion control procedure has the ability to detect congestion

early enough to contain it and the ability to detect th6 end of

congestion early enough to prevent unnecessary reduction of user

traffic.

- 240 -

V L Report No. 4473 Bolt Beranek and Newman Inc.

A simple representation of the relationship between the true

state of the network and the state of the network as perceived by

the congestion control technique is displayed in Figure 5-3. The

shaded area in the figure represents the error in the congestion

control technique's view of the network state. This error is an

J t inherent feature of any technique and is diue to the fact that the

procedure must first measure congestion. then distribute the

measurement results, and then process those resulitus. This entire

sequence of operations takes time, and it is this response time

that is shown in the shaded area in the picture.

The "ideal" congestion control procedure is clearly one in

Swhich the shaded area is minimized. Unfortunately, the

minimization of the response time is not so simple a task. To

begin with, the view of network congestion displayed in Figure

5-3 is an overly idealized representation. In the diagram, there

is a single measure of network congestion, i.e., "traffic". But

traffic, as opposed to its volume, is not a one-diimensional

quantity. A given volume of traffic may or may not result in

congestion depending upon how that volume is distributed. In

addition, the level of congestion is, itself, not a

one-dimensional concept. There is no one single measure of

network congestion. In reality, congestion is a local concept

and is measured by the utilization of a large number of

geographically dispersed resources.

L - 241 -

U;

Report No. 44-73 Bolt E.aranek and Newman Inc.

SATURATION

REAL-\
1 'JV

J41
U4

I 11•.--M E A S U R E D

/ N
TIME

Figure 5-3 Congestion Control Responsiveness

I•
- ~242 -

Report No. 4473 Bolt Beranek and Newman Inc.

Since difýerent measuremens of congestion are

simultaneously being made in those geographically dispersed

locations and since the resultýý of these measurements reach

different nodes at aifferenL times, it cannot necessarily be said

that the congestion control procedure has a single, integrated

consistent view of the state of the network, Node A, which

detects congestion on one of its outgoing links, may send node B

an update so that node B may throttle its scurces. By the time

node B receives the update, node A may have made another

measurement and gotten some new result. Nodes A and B may never

agree on what is happening at any particular moment.

If one thinks carefully about this example one can discern

three components to responsiveness. Congestion must be detected

quickly; news of its occurrence must be transmitted rapidly and

reliably; controls MUSt be applied promptly. Thus,

responsiveness is a function of the promptness of tho

measurement, updating and metering functions of the congestion

control procedure.

There is a complication involved in the attempt to respond

rapidly to congestion. Since resource utilization is subject to

continual stochastic fluctuation, there will be 3hort periods

during which resource utilization is quite high but the resource

uncongested. As an extreme example, consider a network link.

Assume that the link is defined to be congested if its average

243

Report No. 4473 Bolt Beranek and Newman Inc.

utilization is 80%. Whenever a packet is in flight over the link
I L

the line utilization, averaged over the transmission time, is

100%. Yet, one certainly does not want to throttle traffic each

Stime a packet is transmitted. On the otheir hand, one does not

want to measure average utilization over, say, an hour, in order

I to see if a line is congested. One wants to respond rapidly to

congestion but one wants first to be sure that congestion has

occurred.

5.3.6 Overhead

Overhead is a measure of the quantity of control traffic

required to operate the congestion control technique and the

amount of network resources required to process and transmit this

traffic. A procedure which requires a large amount of overhead

runs the risk of reducing the capacity of the network to carry

data. Of all the performance criteria which we are proposing,

overhaad is probably the most directly quantifiable.

One may divide the overhead imposed by a congestion control

procedure into a number of components. First, any congestion

control procedure will require processing resources, probably in

every node. The amount of resources required is a function of

the computational complexity of the algorithmn and the frequency

with which the algorithm must be invoked. A second aspect of a

congestion control procedure's overhead is its requirement for

- 24b

S Report No. 4473 Bolt Beranek and Newman Inc.

memory, once again in each node. There are two components to a

procedure's memory requirements: program space and table space.

The latter may impose an iuportant restriction on how congestion

control is to be implemented. Clearly if controls are to be

applied separately to each user-to-user flow, more table space

will be required than if controls are to be applied on a

node-to-node basis.

A third component of a congesticn control procedure's

overhead is the bandwidth required in order to transport control

packets. Both nodes and lines have a finite capacity to carry

information. Frequently, the network software responsible for

forwarding packets will make no distinction between packets which

contain control information and packets which contain user data.

Thus, control packets can be seen as contenuing directly with

data packets for each node and each line. As the number of

control packets increases, the ability of the node to process

data decreases.

A fourth and extremely important component of a congestion

control procedure's overhead might be called induced

suboptimality. In order to understand this concept consider a

network without congestion control. If one were to plot the

effective throughput vs. the average rescurce utilization for

this network, one would find that throughput peaks at some value

of the utilization which is less than 100%. This phenomenon is a

L - 2245 -

Report No. 4473 Bolt Beranek and Newman Inc.

consequence of the fact that, at very nigh average utilizations,

stochastic fluctuations in queue lengths will result in the loss

of data. All resources used by data which are eventuillY

discarded oust be considered to have been wasted. The capacity

of a network tG carry traffic is inversely related to the extant

to which rescurces ar-e wastea.

One way of looking at congestion control procedures is as

acting to throttle traffic at exactly the point at which the

short term utilization has become much greater than the average

utilization. The probability distribution of queue lengths in a

network without congestion control can be seen as having a long

tail. With congestion control, this tail becomes much shorter.

The risk one runs in operating a network at high utilization

without congestion control is that queues will grow so long that

data will be lost. Therefore, the major benefit of congestion

control is that it allows one to operate a network with a higher

average resource utilization.

In theory, one would like to be able to achieve 100%

resource utilization. Unfortunatelv, no procedure is perfect.

Thus, if one were to plot effective throughput versus average

resource utilization for a network with congestion control, the

curve would presumably peak at some value of the utilizati'n

which is still less than 100%. (The benefit of the congestion

control procedure will be seen in the fact that average resource

L

-24I6

Report No. 4473 Bolt Beranek and Newman Inc.

utilization and maximum throughputi ;iill be higher than if there

had been no congestion control.) By "induced suboptimality", we

mean the differeriece between 100% and the utilization which yields

the maximum throughpu'. under the congestion control procedure.

An analogy for the notio:n of induced suboptimality may be

found in the attempts uf youog children to carry a glass of

water. If the goal is not to lose ..ny water while transporting

the glass, then the amount of water which should be transported

is a function of the child-s skill. An unskilled child may only

able to carry a glass which i3 half full; i more dextrous child

car carry glass in whizh the water level is &k.cse to the rim.

I+, is only the rarest of human beings who will be 3ble to carry a

A completely full glass of water.

The importance of overhead lies in the fact that each of the

above overhead elements robs the network of resources which might

have been used to process and transport user packets. A

- congestion control technique therefore comes with a practical

pricetag, It is important, however, to distinguish between a

technique's costly overhead and its free overhead. If a networkis designed to operate at an overall resource utilization of 50%

an'd the actual offered data traffic requires an average resource

utilization of 40% then the congestion cortrol technique has no

cost if overhead represents less than i3% of all resources. If

the ocrhead exceeds 10%, then additional resources will have to

be puronased. In this case, overhead has cost.

-247 .
i

Report No. 4473 Bolt Beranek and Newman Inc.

5.3.7 Robustness

Robustness measures the capacity of a congestion control

procedure tc successfully handle a variety of network conditions.

There are a number of reasons to require that a congestion

control procedure be robust. One important reason is related to

the fact that, an acýtual network will differ substantially from

its eiriy design. A ongestion control procedure may be

developed in parallel with tts network's design. This forces the

procedure's designer to make assumptions about the network

topology, the noual architecture, the processing power ano memory

in the node, the structure of the nodal software Fnd the other

network protoccls. Many of these azsumptions will prove to be

wrong in the initial network implementaticn or will become wrong

as the network changes. The congestion control procedure must

ei.ther provide satisfactory performance in the face of these

changes or be sufficientiy parametrized so that it may be

fine-,;uned shouio performnace begin to suffer.

Even if n congestion control p!-ocedure's designer has made

assumptions which are largely valid, the model of the network

which he uses inevitably represents a simplification. The actual

behavior of any network will be much more subtle and complex than

the picture of that behavior is some engineer's mino; it will be

more complex than any simulator. Congestion control procedures

are designed by engineers and tested on simulators but they must

- 24g -

I

Report No. 4173 Bolt Boranrek and ono.

operate in the ral world where anything can hPen. Ths

requires a sort of du;-&atlity which we -all robustnes3,

e a special and imiportar.t e-ample o.f the ma!iner in

which a network's envtironment. ,,an d-.ffr from the assumpti ns

made about it by the des5ign1r of a congesticn co)ntrol procedl]re.

When a procedure is de3igned, it Is freouently aasurned that it is

to res.ee in a benign ernvironment. A benign environment is one

in whi,.th all of the participants obey all of the designer's

(implicit or axplicit) rules. By making this assumption,

however, a protocol designer introduces the risk that the

Gfficacy of a procedure can be compromised if a user chooses to

act maliciously by subverting the host interface, or if a program

error produces the satt, effect. For example. there have been

several instances of software bugs which have led to runaway

hosts. it is not difficult to imagine that a congestion control

procedure, some of whose control functions are rituated in the

host software, can be undermined by modifying that soft-ware. -

the design of a congestion control procedure has not anticipated

thesc prcioiems, poor performance can result from their

occurrence.

Frcm the abova discussion, one can deduce the features that

a robust congesticrs control procedure must possess. Such a

procedure will not require that all of its assumptions be true in

ord&r for its operation to be satisfactory. in additron, a

- 249 -

Report No. 4473 Bolt Beranek and Newman Inc.

-obust procedure will possess a sufficient number of "hocks" so

that it rpay be modified after its installation on the network.

5.3.8 Control Feedback Coupling

A congestion control techoiqae performs a fundamental

control theoretic task. " There is a meazurement function (to

determine when congestion exists) which sends a f eedoack signal

to a metering function (to reduce traffic). It is essential,

therefore, that the technique draw the correct inference from a

measurement in order to exercise the proper sort of control.

Control feedback coupling expresses the extent to whicn this is

the case.

It is inevitable that an error will be associated with a

control mechanism which operates on secondary effects in order to

infer the existence or non-existence of some primary event. For

example, a congestion control technique must determine whether a

specific resource is congested and then act in such a way as to

reduce that congestion. Consider a node which consists of an

input queue, a processor and an oitput queue. If the length of

the output queue is less than n, packets -ill be processed, i.e.,

they will be removec from the input queue and placed on the

output queue. Suppcse that a congestion control technique infers

information about processor utilization froim the size of the

input queue; if the queue is long, the processor is held to be

- 250

Report No 4473 Bolt Beranek and Newman Inc.

congested. Obviously, such a technique will frequently produce

erroneous results. A long queue might indicate an overutilized

CPU; but then it might also indicate an overutilized output line.

The moral o' this example is, of course, that a procedure which

attempts to determine whether a CPU is overutilized should, if

possible, measure CPU utilization.

Another way in which false inferences may be drawn by some

control technique occurs whein the teihnique's measurement

function couples two unrelated events. For an example (not

related to congestion control) consider a procedure which

determines that a network link is down if 3 successive data

packets are garbled during transmission. In this case, a line,

no matter how noisy, cannot be declared down unless someone

attempts to send data over it. Thus the up/down status of each

line has been tied to the transmission of data packets. This

type of connection violates control feedback coupling since the

evaluation of network conditions is subject to the vicissitudes

of user traffic.

Control feedback coupling is another example of a metric

which is easy to understand but difficult to implement. Given

the complex interactions in a network, it is conceivable tiat the

measurement function implemented could be based upon multiple

levels of false inferences. This could cause a large error in

congestilon measurement. However, the source of the error may be

obscure.

-1 - 251-

Report No. 4473 Bolt Beranek and Newman Inc.

5.4 Application of The Congestion Control Metrics to RAFT

The application of the congestion control metrics to

specific algorithms is a problem which we have only begun to

attack. Nevertheless, we believe that there are a number of

general observations that can be made.

The use of the term "metric" to refer to the various

performance criteria that 4e have discussed suggests that each

criterion provides a yardstick against which one can

quantitatively assess a congestion control procedure. To really

merit the name "metric," the quantitative scale defined by the

criterion should have a universal character to it. One should be

able to ask, "What is algorithm A's score on the fairness scale?"

and receive a numerical answer which, when compared to algorithm

B's score, has an unambiguous interpretation.

This is, on the surface, an attractive concept. We believe,

however, that the attraction is restricted to the surface. In

order to see this, consider how one would go about defining a

fairness or stability or effectivenes metric. One might invent

and model a "standard" network and set of traffic matrices. If

one were measuring stability, one might then determine the

variance of packet delivery times under the tested congestion

control procedure. One might average these variances over all

"standard" traffi., matrices and take the resulting number to be

-252-

Report No. 4473 Bolt Beranek and Newman Inc.

the measure of the algorithm's stability. Unfortunately this

result would, in general, offer no information about the

stability of the algorithm when applied to another network or

traffic profile. Statements which talk about the stability or

the fairness or the effectiveness of an algorithm are not subject

to universally unambiguous quantification. In fact, to be

completely unambiguous, such statements should refer to a

specific network environment and traffic profile. Algorithms

which are effective under traffic matrix A may be totally

ineffective under traffic matrix B.

The problem with the quest for quantification is that it

frequently seeks to substitute a simple number for a detailed

description of a complex reality. Consider how one goes about

,nalyzing the suitability of a particular congestion control

algorithm for a specific network environment. One generally

thinks carefully about all of the features of the algorithm and

considers how these features will interact with the

characteristics of the network. One then attempts to determine a

range of network conditions under which the algcrithm might fail

and a range of conditions under wbich it might succeed. If the

algorithm has not been rejected at this point, one would then

perform experiments, first using a simulation and then using the

network itself, to see whether adequate performance will occ'r.

-253-

It

Report No. 4473 Bolt Beranek and Newman Inc.

Suppose that one is investigating an algorithm for fairness.

At the end of one's experiments one has, in a sense, a

quantitative measure of fairness to the extent that the results

of one's simulation experiments are quantitative. One does not

have a quantitative measure of fairness in the sense implied by

the sentence, "Algorithm A has a fairness rating of 7." One

instead has a measure of fairness which has meaning only when

given the specific experimental arrangement and an idea of how

realistic the experimental arrangement is.

Thus, our "metrics" should be understood in a methodological

sense rather than in a mechanical sense. We are proposing that a

congestion control algorithm which does not yield adequate

performance will invariably violate one of the criteria described

above. Thus in analyzing a specific procedure, one should be

guided by our performance criteria. In the following, we will

provide an example of this process by analyzing the congestion

control procedure proposed for AUTODIN II.

5.4.1 Background

AUTODIN II is a general purpose, common user

packet-switching network for the DoD community. It is an

extension of the ARPANET technology and is intended to serve

operational military needs into the 1990s. Before evaluating the

congestion control procedure proposed for AUTODIN II, it is

254 -

it
Report No. 4473 Bolt Beranek and Newman Inc.

necessary to understand the motivation for a number of the

procedure's features.

The two primary requirements for AUTODIN II which resulted

in departures from the ARPANET design were the requirement that

AUTODIN Il be secure and that it operate at a higher utilization

than the ARPANET. In order to effect security, each switch is

protected by a security kernel. Unfortunately, the burden which

the security kernel imposes upon the node CPU seriously reduces

the ability of the switch to process packets. Thus, there is a

severe conflict between the requirements for throughput and for

security. The major implication for the subnetwork protocols of

this dilemma is that the protocols must not make a difficult

situation worse by imposing excessive overhead. The ratio of

1. control packets to data packets and the computational complexity

F {of the protocols are required to be small. The protocols which

L-. were designed to meet these requirements are collectively known

. L [" as the Revised Acknowledgement and Flow Technique (RAFT) [4] 151
i [6].

Congestion control is implemented in RAFT (see Figure 5-4)

in the following manner. Associated with evry trunk output

queue are two parameters K' and K, K>K. K is t)-- maxinum

f allowed queue size; K' is the point at which ccrqestion is held

to begin. The purpose of the algorithm is to reduce inpu• at 4--e

source(s) as an output trunk's queue grows from K' to Y,

>1 -255-

f[
Report No. 4473 Bolt Beranek and mewman Inc.

DOG NDN GW

SOURCE
HOST -

HOST
SGLOBAL THROTTLING

SWINDOW ALG

SOURCE
SWITCH. SOURCE - I

RELEASE-v
ALGOR-5 7~ I -19 O

i -I'- THRO"•.

~~UPDATING
PROTOCAL

ANY .
SSWITCH

DELTAK ,
ALGORITHM

"--CONGEST!ON MEASURE.,,ENT
AND FLOW THROTTý.NC
SELECTION

DATAGRAM FLOW
DESTINATION
HOST

Figu e 5-4 RAFT Congestion int-rol ,lgc z,

Rerport No. 4473 Bolt Beranek and Newman Inc.

SWhen a packet is r3ceived at a node and the routing

computation places it on an output queue whose length exceeds K'

but is less than K, a special "congestion notice" (CN) is sent to

a source node so that traffic flow travelling over the link in

question ittay be throttled. There are at least two procedures

which have been proposed to determine which flow should be

throttled and therefore which source should)-e notified. Assume

ihat the difference between the queue length and the value K' is

m. in the simplest scheme, the queue is scanned from the back

forward and the fizst m different source addresses encountered

receive congestion notices. In the more complex method the queue

is scanned and the frequ-ency of occurrence of each source address

is determined. CNs are sent to the m most frequently occurring

source addresses. In both cases, the flows (as opposed to hrsts)

which a:e throttled are chosen at random from the flows which

belong to each source receiving a CN and which have packets

queued on the congested link. This entire procedure is called

the "Delta-K" algorithm.

Should a packet be ieceived et a node and should the routing

algorithm determine that it should be placed on an uutput queue

whose length is K, then the packet is discarded and a

"non-delivery notice" (NDN) is sent back to the source node. The

NDN identifies the packet which was discarded (and is evertually

ijassed back to the originating host which can then retransmit).

-257-

Report No. 4473 Bolt Beranek and Newman Inc.

When a congestion noti.,e or a non-delivery notice is received at

the source node no additiunal packets from the identified flo%

are allowed beyond the source node for a fixed amount of time.

Packets from a flow which is so throttled will be accepted by the

source node until two such packets are queued on a "holding

queue." If two packets are queued, then each addition3l packet

from the flow is discarded at the source node and an NDN returned

to the host. These procedures, which are impiemented at the

source node, are called "Source Release."

Host input is controlled via a procedure calied the GloV•.

Window. Each host periodically receives from its source node a

count. Each time the host submits a packet, the count is

decremented. If the count has reached zero the host may submit

no further packets until a new count is received from the source

node. The size of this count, or window, is computed as a

function of the total number of free input buffers in the source

node and the number of packets in the holding queues belonging to

all flows from the host whose window is being computed.

5.4.2 RAFT Congestion Control Evaluation

In the following material, we will present a critique of the

RAFT congestion control procedure using the methodology described

in the previous chapters. Although we are highly critical of a

aumber of the procedure's features, it is important to note that

- 258 -

Report No. 4473 Bolt Beranek and Newman Inc.

some of these features were necessitated by network requirements

other than throughput. Thus, while we do propose various changes

to the procedure, we do not guarantee that the implementation of

these changes will not have a cost. That is, some modifications

may result in the violation of some other performance criteria or

cf some specific AUTODIN II system requirement, particularly the

requirement for security. While w3 will, at times, refer to the

tradeoffs involved, these will not be discussed in depth inasmuch

as our topic is neither security nor the performance of the

security kernel.

5.4.2.1 No Buffer or CPU Utilization Measurement for Tandem

Traffic

Problem

RAFT measures congestion at tandem switches by comparing the

size of the queues for each outgoing line to the values K' and K.

Since only queues for lines are measured, this approach assumes

that circuit bandwidth, as opposed to nodal memory or processing

power, is the network bottleneck. This assumption occurs

frequently in the literature on RAFT. For example, the analysis

of RAFT performance presented in Reference [5] argues that the

switch CPU can process packets at a rate which is high relative

to the rate at which packets can be received by the circuits.

The analysis also argues that the node contains so much buffer

j t 2
S~- 259 -

Report No. 4473 Bolt Beranek and Newman Tnc.

space that it can be assumed that there are always a large number

V of free buffers.

All of these assumptions appear to have beei. invalidated by

the subsequent development of the switch. Early tests of the

AUTODIN II switch performance indicate that the CPU bandwidth for

packets will be smaller than projected. (This problem is

compounded by the demands which the NCC can make upon the node

CPU when it requests any of a number of complex reports.) In

addition, the program memory requirements are larger than had

been assumed in the early design. At least some of this added

memory for node storage was obtained at the expense of buffer

space. To summarize, the RAFT congestion control design assumes

that contention for lines will be the only source of congestion

at tandem switches. Therefore, congestion is measured only at

the queue for each line. Subsequent developments give reason to

believe that limited buffer space and demand for CPU will also

contribute to congestion.

A simple example can illustrate how RAFT's assumptions will,

if false, affect network performance. Assume that the CPU in

some node is a bottleneck. That is, assume that packets arri¶a

at the node at a rate which exceeds the ability of the CPU to

pzocess packets and that the output lines are uncongested. Then

the input queues will be very long and output queues will be very

short. The Delta-K algorithm, which bases its estimate of

- 260 -

Rexort No. 4473 Bolt Beranek and Newman Inc.

congestion upon the size of the output queues, will not generate

congestion notices despite the fact that the node is congested.

If the situation persists, the buffers in the node will be

exhaubted ý.s more packets queue for processirg. The node will no

longer accept traffic from its neighbors which may, in turn,

congest. Eventually, the output queues in adjacent nodes may

grow and congestion will be detected.

Performance Criteria Violations

The fact that RAFT restricts its measurement of congestion

to output queue lengths is one of its most serious deficiencies.

The performance criteria violated are responsiveness, control

feedback coupling, and robustness. Responsiveness is violated

because the procedure will not rapidly respond to congestion

under highly probable cirz-umstances. In the example cited above,

the output queues in the congested node will remain quite short

so that the algorithm does not immediately detect the oucurrence

of congestion. It is only after the congestion has 3pread to the

adjacent nodes that there is the possibility of reacting to it.

Control FE.-dback Coupling is violated because the algorithm doeL

-t measure resource utilization in order to detect congestion.

_n;rtead, conr•tion is indirectly deterted by measurements on

queue iergths. Finally, the procedure is not robust because its

.rformance is dependent upon the presence of inexhaustible

buffer -oace and processing bandwidth. Neither of these

2
~- 26).-

Report No. 4473 Bolt Beranek and Newman Inc.

assumptions is true and, as a result, performance can be expected

to suffer seriously.

Solutions

The obvious solut-i to the above stated problem is to

monitor the demand for the CPU and tor buffers. The demand for

the processor can be measu !d by examining the size of the- SCM

Communications Processing Queue, which is the equivalent of the

ARPANET s TASK queue. Another (and more powerful) approach to

resource utilization measurement would involve the security

kernel: whz h is the only process which knows the eiact state of

the buffer pool and of the CPU.

Any of these solutions will impose a greater overhead.

However, it appears that the cost will oe slight when compared to

the obvious gains.

5.4.2.2 Delta-K Measurement Accuracy

Problem

The key measure.aent procedure in RAFT is the Delta-K

algorithm which infers information about a circuit's utilization

by measuring the number of packets queued for that circuit. A

little reflection indicates that this procedure can produce

highly erreneoLs results. As an example consider that RAFT will

be likely to decide that % line is more congested if there are

-262

Report No. 4473 ,.olt Boranek and Newinan Inc.I
E ten 200-bit packets queued than if there are five 1000ibit

packets queued. Tnat is, RAFT will sometimes decide that the

utilizatior. of a line which transmits 2000 bits is greater than

r the utilization of a line which transmnits 5000 bits, even if the

lines have the same capacity.

The decision to count palr-est8 rather than bits was based

upon security considerations. In order to prevent the

possibility of estabilishing a covert storage channel, the

untrusted software of RAFT cannot bea privy to packet iengths.

Thus, congestion control must either be implemented in the

security kernel, or it must be ignorant of the lengths oC

packets. It was decided not to put the congestion control

algorithm in the security keri, el because trusted software

requires formal verification. Since congestion control routines

can be expected to require requent modification, ýhe necessity

for repeated verification uf this software was thought to be an

excessive burden.

The fact that the congestion control procedure -,as only

allowed to measure quantities of packets was not viewed as a

R serious deficiency because the original AUTODIN II specification

indicated that bulk fiie transfers would dominate the network

traffic profile, It was estinated, therefore, that 92% of all

packets would be of maximum size. This being the case. it was

reasonable to assume that, on average, packet count is a fairly

263 -I:_ __

1-4
Report No. 4473 Bolt Beranek and Newman inc.

aceurate measure of bit count (although not necessarily for all

output queues).

Unfortunately, the projected traffic profile has since been

mcdified and Lhe eypected percentage of ful] packets has been

reduced to 66%. This has removed whatever justification there

was for assuming that the number of packets queued for a line is

s good measure of th1at line's uLilization.

Performance Criteria Violations

Effectiveness is the performance criterion which is most

serfou:!.y violated. Since in the best of circumstances, the

Delta-K algorithm will only have an approximate sense of the

s Jte c!' any line, the amournt of traffic which Is throttled will

invariably be wrong, In our discussion of effectiveness, we

likened congestion control to a surgical procedure by which

prec'sey the right amount of traffic is removed from the

network. By .easuring congestion as it does, Delta-K may be

compared to a surgeon operating blindfolded; Delta-K never knows

exactly how tuich traffic is presecot.

A second 1zerfon'mance criterion which is violated Js that of

feedback ccupling. The measurement of congestion is based upon a

third order eýVfect. The number of packets queued is held to

imp! y the number of bits qn;eued which is held to imply the state

of the circuit for which those bits are queued. To kriw whether

- 264 -

"Report No. 4473 Bolt Beranek and Newman Inc.

a circuit is overutilized one should obtain a more accurate

measure of link utilization.

A third performanoe criterion which can be violated is

fairness. Since the source which is throttled is t-at with the

most packets queued for a congested line, then a source which

typically generates a large number of small packets will find

itself throttled more frequently than a source generating full

packets at a slower rate. This will happen despite the fact that

the line bandwidth required by the slower source may be greater

than that required by the source more frequently throttled. One

wculd expect that sources which generate a large amount of

interactive traffic will find themselves throttled by Delta-K a

disproportionate amount of the time.

Finally, the algorithm as designed has proven to be

Svirtual.y helpless in the face of changes in the traffic profile.

Once again, the precondition which allows one to detect

S!. congestion by counting packets is that all packets be the same

length. When the algorithm was designed, it .,as thought that

most packets would be the same length. It is now believed that

this will no' be the onne. The change in the expected

probability disLit-butiin of pa r- 1r,-, lengtizi hns severely

undermined the expected perlormance of RAFT congestion contru±.

2 b:

Report No. 4473 Bolt Beranek and Newman Inc.

Solution

This particular problem provides a classic example of the

conflict between security requirements and congestion ,;ontrol.

There are two solutions. The first is to relax the secur-ity

constraint and allow untrusted software to have access to packet

lengths. The second is to assign responsibility for the

measurement of congestion to the security kernel. From the

standpoint o&f congestion contr'ol, the effect of both of these

* solutions is the same, 41.e., to count bits rather than packets.

The solutions differ in that the first solution requires a

relaxation of the secut-ity constraints and the second requires an

expansion of trusted software.

5.4.2.3 Lack of Smoothed Measurement

Problem

I

The measurement portion of the Delta-K algorithm makes its

decisions based upon instantaneous measurements. Each time a L

packet ar-ives at an output queue, the length of the queue at

that moment is checked to rmeasure congestion. There is no

attempt to compute an a,,erage queue length measured over soiie

period of time. The use of instantaneous measurements is a poor

procedure because the results of such measurements are sub'ject to

extreme stochastic fluctuations. There is always a finite

probability that a large number of customers will be queued for

-. 266 -

Report No. 4473 Bolt Beranek and Newman Inc.

an extremely underutilized server, although this large queue will

be short-lived. For example, any time a burst of more than K'

packets arrives at a queue, Delta-K will throttle some host.

This happens despite the fact that the queue may immediately

empty out :d remain empty for minutes. By relying on

measurements of instantaneous queue lengths, the Delta-K

algorithm may respond to "congestion" which is destined to

dissipate quickly without external intervention.

Reliance upon instantaneous measurements is a feature common

to many congestion control designs. The argument mustered for

these designs is that congestion control is needed specifically

to hanale peak transients. According to this view, longer term

congestion prevention is not the responsibility of congestion

control bit of routing and flow control. This argument can be

responded to in several ways. First, even if it were true that

congestion control is Jintended to react to short-lived peahs,

this does not argue for a procedure whih deteccs congestion from

irnstantaneous measurements. It merely argues that the period

over which observ'ations ar2 averaged be ahort. It is also

incorrect that long-term congestion is the exclusive domain of

routing and flow control. It may be the case that 3 iipge number

of small flows have to traverse a single circuit and that no

alternate paths are available- in -t-his case, steady state

congestion can Brise which cannot be removed by roiting since ,.he

+ • 267 --i-.'

Report No. 4473 Bolt Beranek and Newman Inc.

flows in question have but one route. Finally, if it is true

that congestion control is intended to respond to short-lived

peaks, then why have congestion control at all? That is, why act

to eliminate something which will rapidly disappear by itself?

It should be pointed out that the absence of smoothed

measurments in RAFT was, in part, motivated by security

considerations. It was a security goal that routines implemented

in untrusted software be memoryless so as to prevent the

establishment of covert storage channels. Since averaging

requires the storage of data for at •east the duration of the

averaging period, a congesuion control procedure using smoothed

measurements cannot be memoryless. Since the enlargement of

trusted software to include a relatively volatile protocol is

inconvenient, the use of smoothed measurements in Delta-K was

- precluded.

Performance Criteria Violations

The pprformance criterion which is most seriously violated

by the use of instantaneous measuremcnts is effectiveness. Since

the algorithm reacts to short-lived transients, traffic may bt

unnecessarily throttled. This will result in reduced throughput.
It should be pointed out that transients work in boLt directions.

That is, it is conceivable that the output queue for a ýery busy

link will be, for short pertods. very 3mall. In this case RAFT

-268-

Report No. 4473 Bolt Beranek and Newman Inc.

may relax controls too soon, resulting in insufficient

throttling, prolonged congestion and, therefore, reduced

throughput.

The fact that the congestion measurement is being made only

upon the arrival of a user packet results in violations of other

performance criteria. Rcbustness is violated since the procedure

does not contain sufficient parametrization. One cana certainly

adjust K and K'. One does not, however, have the ability to

adjust the manner and frequency with which measurements of

congestion are made in the same sense that smoothed measurements

allow one to alter the time period over which the averaging is

performed.

By measuring oongestion only upon the arrival of a packet at

an output queue, RAFT also violates control feedback coupling.

Ideally, one should determine whether a resource is congested by

continually monitoring the state of that resource. In RAFT,

Smeasurements are always conditioned upon the arrival of a data

packet at the queue for an cutgoing line. There is absolutely no

basis for coupling these two phenomena.

Finally, stability also suffers -nder the Delta-K

measurement procedure. Since irstantaneous queue lengths are

.-uUD4-ct ýo cýýn s tant stoc-asi•c. fluetuat.on, cne actionn of RAFT

-or.gestion control, which are ba.sed upon those .ueue l.engths, are

- 269 -

Report N.. 44,3 -A••,i a-d ihew _. - ,-,

similarly st •ject t- iuctuation. "1 Ie I i.- olves

throct±ed in a m a-n ,r whi,_h seems f' s i co•o -

PossiK)]e Sc.utions

The so',÷ W n -o th' x ,c aused t y instanta: •o.o

measurerpetts is t -ngp tthe p.-)ýCIur, so t',at smoot-

measurements ., •gesticý are -ao- Tr-__s -odi'catior rpqui-e.

a significant change •o r' rr.- 1gorit-m's implementeaion.

There _t ,er of ways in waich --moot -ed ineasu.- ment s

can be introduced. For example, the - tp.• qe._ length can be

a'eraged over some small I 'ea-remi,; period. iii modificatico

has the virtu, -f sinplici•t. •ut -e~ains the cause! o

detecting congestion solely by measuring thr -en_- oD r he

output aueues. A a. -- p conmpi x -rod ficat -_ o- tne RAFT procedure

would result 1n ,oe asureeros of CPU, ý'uffer, -,A iný

utilizations, aver •geu ove'" I IT, -1- -,oI f-c -_ C. 1 Ight

require security ke -"el involvement

To avoid in,'-oduýing ne,4 prcý:ems, :he jse of s•--ýher

measurements requirez, carefu. Luning. 4ssunoe Onat ther- 3

fixed time period D:er which -es_-' -u

m asured. Each time on e of hhese me • r er -c-n ec

average utilizations are cz'mpu;teo aqr- .

not any resource is -zongelte -- ,ao

excessively long, then -'..e o•ou-e wz .-

-23

Mo. ~,bolt bera~tek- and Aewman Inc.

:cnge~tioi- quhickly enoag-~. Yhus, the per~fm.ýanee criterion of

cesp.)nsiveie 3.- w4 11 be vic1 ated, the Aircg1& iit-Ji~ation may be

'roc high, and th ctmay suffer. On t~he othp' hand, if the

'eas,_reener period i S eAAeosively short, onie reproduces al) of

^,e problems assc-ciated witn- 'istantaneous tme:surements.

If course, tre ust -' smoothed measuremerivs r e ui re s a

~or~stir~ ontol rocedurc with memory. if i11iplem~ented in

untrusted software, such -2 7?ocedu~re viclates security

guidelir.Ies; i * implen~ented tesecuri~tv kernel , such a

U_ ~ proccý,2ure cannot be easily moai:'ie-d

Orobiem

Delta-K 'Asz rno-t -ompK ýx desiJý,. selects the &st that

be rtro,ý -hrin eve.-t :ýf icc-4estion in tie following

F --z~nne, pa:ket' ar-- ars 3f, a qtueý_ wnu-se length exceeds K~

b~M. to rre mi so'wze *vc have the most packets

-ti o~eue. -h is !D roc e ur,ý nas T e- -jirtue of s-implicity.

V 60~'~~ 0t e s~ ~eul tr a number of serious

sr~ pt~~ t ~e r -¶ncýne t, ell a.

beg ~t A ac om a flow A which are

0 S- ý s -- Rtar- e ecessarily a mieasure

>-ý- <,ersi e Mear 1cr .. !! . common to xUows

"Report No. 4473 Bolt Beranetk and Newman Inc.

and B, each of which originates at a different source. Flow A

may, on average, require 60% of L's bandwidth and Flow B 30%.

Nelertheiess, at any given instant, there is a finite probability

thtat more packets from B will be queued and that Delta-K will

therefore choose to throttle B.

It wiay be argued that A will be chosen for throttling with

mich higher probabiltty than B and therefore the problem is not

severe. Unforl-unately, a tnumber of RAFT feat,!res argue against

this conclusion. First, recall that "elta-K counts packets and

net bits when 't exziines queue lengths. Therefore? if B's

packets are typically very short and A's packets are typically

full, then B may be chosen for throttling more frequently than A

despite the fact 'hat A is using twice as much of the line's

bandwidth. This was discussed in Section '"4.2.2 above.

Even if A's packets and B'1 packets are of the same size, a

number of not improbable scenarios can result in the frequent

throttling of the non-offending flow B. Assume, for example,

that traffic from A arrives in a regular manner at the queue for

L so that there are typically 4 packets queued. Assume also -hat

B sends traffic to L intermittently. Although B is dormant for

long periods of time, it will periodicaliy send packets in such a

manner that, for short periods of time, it has an average of 8

packets queued. Then, for the periods during which both A and B

are active, there are 12 packets queued for L. If the value of

-272-

Report No. 4473 Bolt Beranek and Newman Inc.

K' is 11, then during such periods B will be throttled, despite

the fact that its demands for L are much less than A's.

It may be said that B merits throttling. Congestion control

is corcerned with short-term congestion and, in the example

cited, B is responsible for the short-term congestion. This

argument is hard to justify; if B is active only for short

periods, then it is probably more equitable for A to back off

somewhat during those periods. Futhermore, B's bursty behavior

may itself be an artifact of the RAFT procedure. Assume that B's

users are constantly active, submitting traffic in such a way

that the number of packets queued for L would be, on average, 2

in the absence of congestion control. Assume that, at some

point, B is throttled so that traffic queues at its source host.

When the congestion control timeout peri.od ends, a flood of

packets may arrive at Lhe network, resulting in the throttling of

B. This process can c.ntinue indefinitely.

It might be argued that for this unfortunate spouence of

events to occur and reoccur hosts A and B must behave more -r

iess synchronously and that such behavior is unlikely. Consider,

however, that AUTODIN II hosts will, in all likelihood, be

operating the same host-to-host orotocols. This increases the

probability that hosts will behave uniformly in response to some

set of network conditions. Thus, one might o: pet periods of

time during which host behavior is, in some sense, synchronized.

2

Report No. 4473 Bolt Beranek and Newman Inc.

There is another not unlikely example in which the

non-offending host will be throttled by RAFT. Suppose that

"buffer space is the critical resource, that K' = 14 and consider P1
a node with two queues. On one queue there are 14 packets, all

from Host A. On the other queue, there are 15 packets, 2 from

host B and the other 13 from different hosts. One would expect a

flow control procedure to throttle host A, which is using 7 times

as many buffers aL any other host. Under Delta-K, however, B [

will be throttled.

Thus far, we have only addressed the question of how Delta-K

chooses which host(s) should have its (their) traffic throttled.

We have not yet discussed how it is determined which flow is

selected for throttling. (Two packets are considered to be part

of the same flow if they have the same source and destination

host addresses and the same precedence level.) The congestion

notice that is sent back to a source node not only identifies a

host but also a particular flow from that host. Only traffic

from tae identified flow is throttled. Thus, when a host is

selected for throttling by Delta-K, some flow is chosen from

those flows which have packets queued at the congested link.

The-e is no attempt to select a "most offending flow" from each

offending ho3t; the only rule is that one and only one flow is

selected for each host receiving a congestion notice. This flow

aipears to be selected more or less at random.

-274 -

I7

-!

Report No. 44 7 3 Bolt Beranek and Newman Inc.

The effect of this procedure is to exacerbate the problems

associated with the method used to select offending hosts. The

net effect of the two procedures is that there is a finite, if

not significant, possibility that the least offending flow from

the least offending host will be selected for throttling. A

specific example dramatizes this point. Suppose that a user at

host A is sending a large amount of traffic to host B, that

another user at host A is sending a large amount of traffic to

host D and that a third user at host C is sending a small amount

of t,'affic to host E. Assume that all of these flows and only

these flows travel over link i which, at some point, has K'+2

packets on its queue. In this case, Delta-K will always throttle

the flow CE, despite the f-"t that it is profoundly

non-offending.

Performance Criteria Violations

The most otvious performance criterion which is violated in

the above examples is fairness. In each example, the host or

flow which is not using the largest amount of resources is chosen

for thi'ottling. This results in a situation in which some other

host or flow is allowed to consume a disproportionate percentage

of network resources.

Since the offending source is not necessarily throttled

tunder Delta-K, the effectiveness of the congestion control is

-275-

__ _ __i

Repoct No. 4473 Bolt Beranek and Newman Inc.

consequently called into question. The analysis uf Delta-K

presented in Reference [5] assumes that as control traffic (CNs

and NDNs) increases, it replaces offending user traffic. Since

the announcement that a source is causing congestion is made

prior to saturation and since that source is immediately

throttled, the analysis concludes that (1) there are sufficient

resources to carry the control traffic and that (2) the control

traffic is effective in removing congestion. if the

non-offending source is consistently chosen for throttling, both

of these conclusions will be wrong. The actions of the

congestion control mechanism will not cause the offending source

to be throttled and the addition of control traffic exacerbates

the congestion. The resulting performance can be disastrous, as

congestion not only continues to grow but even accelerates as

more control traffic enters the network.

Solutions

Clearly a more complex method is required to identify

offending flows. There are any number of options, although each

requires that more information be provided to the selection

procedure than is currently assumed. Ideally, one wants to

monitor the utilization of each node resource by each flow

(rather than host). These measurements should be averaged over

some suitable period of time. When a resource is congested, a

flow is selected for throttling in a manner consistent with the

network's definition of fairness.

- 276 -

Report No. 4473 Bolt Beranek and Newman Inc.

The obvious cost of a more complex procedure is in overhead.

The number of possible combinations of sources and destinations

in a network is sufficiently large that, the memory required to

track the utilization of each resource by each flow may be

prohii'itive. Since the most offending flow is to be selected for

throttling, some sorting or searching procedure is required which

is cognizant of source and destination host addresses. This

M induces overhead in the form of added computational complexity.

If the definition of fairness is to be relaxed, then one can

reduce all of this overhead. Rather than look at

rim source-destination host pairs, one can look at source-destination

node pairs.

Parenthetically, it is worth noting that the introduction of

destination addresses to the congestion detection algorithms

I allows for a more general type of congestion measurement. If one

observes a large number of source addresses on a long queue, one

can decide who should be throttled. A preponderance of some

particular destination address on a long queue indicates

congestion which is forward of the queue. Thus, the use of

destination addresses not only allcws one to throttle offending

flows but also can help identify the ultimate source of the

congestion.

277I
S~-2•77-

Report No. 4473 Bolt Ceranek and Newman Inc. ii

It goes without saying that a procedure which has access to

detailed information about network traffic may require tne

participation of the security kernel.

5.4.2.5 Reliability of CN and NDN Propagation

Problem

Communication between the Delta-K algorithm (at a store and

forward node) and the Source Release and Global Window algorithms

(at a source node) is accomplished with Congestion Notices (CNs)

and Non-Delivery Notices (NDNs). Both CNs and NDNs are treated

like datagrams; there is no special reliable transport protocol

for CNs and NDNs and they are not acknowledged. The CN packet is

assigned the same priority as the data packet for which it was

created. An NDN is assigned a high priority. Since there is no -j

reliable transport mechanism for CNs and NDNs, and since CNs are

not necessarily sent at a high priority, the possibility arises

that these control packets may be lost, or at least excessively I

delayed during transmission. This possibility is compoundeo by

the fact that CNs and NDNs are generated at a node only when that

node is having difficulty handling traffic.

It may be argued thiat, since NDNs and CNs travel toward the

source, they are never placed upon the same queue whose excessive

length caused their generation in the first place. That is, they

are sent away from the congestion and will not be excessively

-278-

Report No. 4473 Bolt Beranek and Newman Inc.

delayed. This argument is specious for a number of reasons.

First, it does not follow that because a link is congested, links

in the opposite congestion are uncongested. Congestion in one

direction may, in fact, be directly correlated with congestion in

the opposite direction, particularly during the peak hour. This

will occur, for example, if there is a large volume ofI interactive traffic. In addition, the version of TCP that will

be implemented on AUTODIN II may result in separate

acknowledgments for each packet. Thus packets travelling in one

direction automatically give rise to packets travelling in the

opposite direction, possibly causing bidirectional congestion.

Furthermore, some resource other than a line may be congested.

If memory or the CPU is the critical resource in the congested

node, then the argument that the CN or NDN may be lost or delayed

still holds. Buffer and CPU congestion are not directional.

Finally, it cannot be assunted that a CN or an NDN will not

be placed on the queue whose congestion they are reporting.

Suppose that source node S is sending traffic to destination node

D on a path that travels through intermediate node I. Suppose

also that I's trunk in the direction of D and its trunk in the

direction of S are heavily loaded. Now consider what happens if

I's trunk in the direction of D goes down. The many packets

queued for that trunk will need to be rerouted, perhaps being

placed on the queue for the trunk in the direction of S. This

j -279-

Report No. 4473 Bolt Beranek and Newman Inc.

will doubtless congest the trunk, causing generation of a flurry

of CNs or NDNs to be sent to S. The packets will now be placed

on the same queue where the packets from S are residing.

In summary, RAFT does not include a reliable transport

protocol for CNs and NDNs. This fact and the fact that UNs and A

NDNs are exclusively generated in congested nodes enhances the

possibility that CNs and NDNs will be lost. Since the congestion

control procedure in RAFT depends upon receipt of CNs and NDN.E at

the source node in order to perform properly, the performs,,-, of

RAFT can be questioned.

Violations of Performance Crieltpja

The two performance criteria which are violated are
effectiveness and responsiveness. Effectiveness is violated

because there is the strong possibility that congestion control -}
will break aown under not improbable circumstances. Short of

total collapse, the loss of a CN or NDN or an excessive delay in 1

.the delivery or a CN will result in an excessively slow response

to congestion.

Slu t ions ns

There are a number of ways to approach this problem.

Currently reception of a CN will result in some sources being

throttled for a fixed amount of time. This time period does not

J

-280-

--4-

Report No. 473 Bolt Beranek and Newman Inc.

vary from CN to CN. Persistenit congestion may therefore require

the generation of a large number of congestion notices. If the

period for which a flow will be throttled is computed at the

congested node as a function nf the degree of congestion, the

number of CNs required may be accordingly reduced. This will

tend to reduce the burden which congestion control places on the

links from the congested node, However, it will increase the

L processing overhead required to produce a given congestion

notice.

Unfortunately, reducing the number of CNs makes delivery of

each CN more important, it would thee'efore be cost effective to

introduce a reliable transmission protocol for CNs and NDNs.

5.4.2.6 Sudden Throttling at Source Switches

.Pjoblem

Upon reception of a CN or NDN, the sourca node ceases to

pease traffic f.,om the identified flow into the network.

Packets from the floN continue to be accepted by the node and are

stored in a tempor3ry holding queue until there are two packets

stored. At that poinr, additional packets received from the host

for the throttled flow are discarded. After a fixed amount of

time has elapsed from the reception of the original CN or NDN,

and assuming that no additional •.Ns or NDNs have been received,

all queued packets may be releýscd into the network. This

S-281-

Report No. 4473 Bolt Beranek and Newman Inc.

procedure is termed Source Release. The Source Release procedure

can be thought of as assigning one of three states to each flow.

For flows which are held to be uncongested, the procedure

operates transparently. For flows which are congested, the

algorithm holds off traffic from the network by placing packets

in the holding queue. For flows which are satate__td, the

algorithm discards packets.

The problem with Source Release is that the sudden release

of packets from the holding queue and from the host may

exacerbate the original congested conditior which caused the CN

and NDN to be generated. Assume that a host has a large volume

of traffic to send and that the host has been temporarily

throttled because of the receipt of a congestion notice. One can

therefore expect that the holding queue for the flow in question

will iwmediately fill. The source node will then reject all

further packets from the flow, but these packets will simply

requeue at the host. When the congestion notice times out, the

node will stop rejecting packets and the packets queued at the

host and at the source nod- will stream into the network. There

is no provision in RAFT to gradually increase the size of flows

which have been throttled due to nongestion. On the contrary, a

significant backlog of packets is allowed to suddenly rush into

the network. This flood may produce further congestion.

-282-

Report No. 4473 Bolt Beranek and Newman Inc.

The problems caused by Source Release would be mitigated if

there were some other pr(tocol acting to reduce the volume of

some large end-to-end flow. In this case, congestion control

would intercede to stop the initial occurrence of congestion

caused by this flow and flow control would act to prevent the

reoccurrence of congestion. Unfortunately, Source Release is the

RAFT end-to-end flow control procedure. Thus, if some flow in

the network is excessive, the result will be an endless

repetition of congestion and throttling.

Violations of Performance Criteria

Source Release is clearly unstable and ineffective. Under

conditions of steady, but excessive, host input, the network

offers erratic service. Packets will be accepted from the source

and will arrive at the destination in bursts. Excessive flows

always cause congestion or are kept from the network; they are

never managed so that throughput is maximized without taxing the

nettw.rk.

Control feeoback coupling is also violated. The source

node, having received a congestion notice, will not receive any

additional notification about resource congestion or

non-congestion unless it transmits additional user packets which

* give rise to additional CNs. The technique therefore requires

that a source node have host data to transmit in order for the

-283-

.i

Report No. 4473 Bolt Beranek and Newman Inc. "1

node to know whether or iot some resource is congested. It must

contribute to congestion in order to know that congestion exists.

Solutions

The seriousness of these problems may be reduced by

modifying the Source Release algorithm. Unfortunately, the

algorithm may be tuned only by changing the congestion timeout

value and the size of the holding queue. Neither of these

changes eliminates the problem of queued data rushing into the

network when the congestion timeout period has passed.

A more complex modification would see the introduction of a

fourth state called "metered flow", which is intermediate between

the congested and uncongested states. While a flow is metered,

the rate at which packets enter the network is strictly

controlled. If no congestion notices are received, _ ý'ntrols

are gradually loosened until they are non-existent.

The major potential cost associated with the metered flow

approach is to -esponsiveness and effectiveness. If the controls

are relaxed too slowly, then an excessive amount of traffic will

have been withheld from the network and the algorithm will

respond too slowly to the absence of congestion. If controls are

applied too rapidly, then metered flow will not solve the problem

for which it was invented. All of this requires careful tuning.

The introduction of metered flows clearly increases the overhead

imposed on source nodes.

- 284~

Report No. 4473 Bolt Beranek and Newman Inc.

V 5.4.2.7 Circumventing the Global Window

Problem

The Global Window restricts the total number of packets

which can be submitted from a given host. If a host has most

recently been assigned a window size of n, then once that host

has submitted n packets, it cannot submit additional packets

until it receives a new window size from its source node. The

window size is inversely related to the number of congested flows

Si.e., flows for which UNs and NDNs have been received) and is

directly related to the total number of flows from that host.

(The details of the host interface are given in the Segment

Interface Protocol [7].)

The Global Window algorithm introduces a number of

potentially serious problems. Most of these problems arise from

the fact that the window restricts the total traffic from the

host; each flow is not separately controlled. A malicious host

can easily undermine the Global Window by establishing flows over

which it intends to send no traffic. These bogus flows may be

established by sending datagrams to a large number of different

hosts at multiple precedence levels. Since the Global Window is

computed as a function of the number of uncongested flows, the

malicious host, because it has established many bogus flows, will

receive a very wide window. This window will be wide even if all

ýf the host's "real" flows are congested.

' 1 -285 -

SReport No. 4473 Bolt Beranek and Newman Inc .

A second problem caused by the Global Window algorithm also

arises from the fact that a single window controls all flows. A

cooperative host receives no infor.aation about which flows are

involved in congestion and therefore cannot voluntarily suppress

those flows. This is a problem which is present in many similar

techniques. Global information, when used to control multiplexed

flows, hides details which are essential for the intelligent

system-wide management of traffic.

Violations of Performance Criteria

Since a malicious user can undermine congestion control, the

procedu-e is neither effective nor robust, Since all flows are

controlled by a single window, non-offending flows may suffer.

This will happen because flows which contribute to congestion

result in a reduced window size. But a reduced window size

affects both offending and non-offending flows. The procedure is

therefore not fair.

Solutions

Wirdows can be implemented for each flow. (This :should not .3

introduce the additional burden of a virtual circuit interface.)

Alternatively, a single global window can be maintained, but the

hosts can be informed of which flows are congested. Clearly the

ease with which bogus flows can be established should Le reduced.

28Ii

i~- 286 -

tFA11 ,
Report No. 4473 Bolt Beranek and Newman Inc.

Introducing windows for each flow or informing the host

about congested flows adds to the pr~cedure's overhead. Not only

imight additional source node memory and processing power be

required, but additional access line bandwidth might also be

needed.

5.4.3 Conclusions

Our overall conclusion is that AUTODIN II will have serious

performance problems with the current congestion control

procedure as the network develops beyond the -OC. These problems

will probably not be so noticeable under the relatively light

load that can be expected during IOC, but will become worse as

traffic grows.

Some of the particular problems cited have easy solutions of

minimal cost. Other problems have solutions which introduce

significant CPU and memory overhead, particularly at source

nodes. Many problems have solutions which either require that

security be relaxed or that the security kernel actively

participate in congestion control. Several problems require

further study via simulation and/or network measurements. We

wish tc stress that it would be unwise to "patch" RAFT by fixing

only some of the identified problems. Improvements in AUTODIN II

congestion control should be done as part of an overall

evaluation. It will be most critical to keep the design changes

-287-

I2s

Report No. 4473 Bolt Beranek and Newman Inc.

extremely well engineered in crder to avoid the introduction of

new problems. TI
Some of the issues identified in t•his critique go beyond the

details of RAFT's problems and touch upon two fundamental

conflicts. There is a basic conflict between the preventive and

curative .pproaches to congestion control. Does one get better

performance if one is conservative about allowing traffic into a

network after congestion has been detected than if one adopts a

less conservative stance and is willing tc respond to, rather

than anticipate, congestion? RAFT was designed as a curative

procedure with a liberal attitude toward the risk of congestion,

our proposed modifications wouli tend to move it in the
- -

4

preventive direction. There is also a second conflict between

the short and long term views of congestion. If one uses

smoothed measurements, at what point does responsiveness suffer?

lf one reduces the time over which observations are averaged,

when does one start responding to transients and unnecessarily

throttle traffic? Is it possible to find an optimal value for

the averaging interval? Absolute statements about these issues

must be made with caution until they are better understood.

288

Report No. 4473 Bolt Beranek and Newman Inc.

References

[13 D.W. Davies, "The control of congestion in packet-switching
networks," IEEE Transactions on Communications, COM-20, 546
(June 1972).

[2] S.S. Lam and M. Reiser, "Congestion Control of
Store-and-Forward Networks by Input Buffer Limits," National
Telecomn.unications Conference Record, 12:1, NTC-77, IEEE
Press (December 1977).

[3) L. Pouin, "Congestion Control Based on Channel Load,"
Reseau 2yclades Report MIT-600, (August 1975).

[[43 P.J. Sevcik and P.J. Nichols, "A Flow Control Technique for
Datagram Subnetworks," National Telecommunications
Conference Record 32:2, NTC-79, IEEE Press (November 1979).

[5) P.J. Sevcik and P.J. Nichols, "Revised Acknowledgement and
Flow Technique (RAFT)," Western Union Technical Note 78-011.2
(September 1918).

[6) P.J. Sevcik and P.J. Nichols, "Packet Transport Protocol
Design Considerations," Computer Networking Symposium
Proceedings, IEEE Press (December 1978).

[7] V.R. Kulkarni and P.J. Sevcik, "Initial AUTODIN II Segment
Interface Protocol (SIP) Specification," Western Union
Technical Note 78-07.2 (October 1978).

-289-

41
fL

Report No. 4473 Bolt Beranek and Newman Inc,

6.A NEW CONGESTION CONTROL PROPOSAL

In our chapter on multi-path routing, we proposed a 7

congestion cCrtrcl or flow apportionment scheme to Le integrated

with that routing algorithm. That scheme was based on explicit j

measurements of link utilization. In this chapter we will

discuss the possibility of performing congestion control without

explicitly measuring the amount of residual capacity on each

network link. While it is clear that such measurements are

needed in order to do flow apportionment in the multi-path

throughput-oriented routing algorithm, it is much less clear that

such measurements are necessary, or even useful, as input to a

congestion control scheme which is to be integrated with a
LA

single-path, delay-oriented routing algorithm. Hence it is worth

investigating a simpler congestion control scheme, which may

share many of the properties of the more complex one.

In this simplified scheme, measurements will be performed on
each link. As a result of these measurements, each link will be

declared to be in one of three states: undeýloaded, maximally

loaded, or congested. The details of the measurement procedure

will be discussed later. The measu-ements will, however, be -

smoothed over a suitably long interval in order to guarantee that

detected state changes reflect real state changes, rather than

stochastic variations. The state of each link will be reported

in the ordinary SPF routing updates. Generation of a new routing

290 -

Report No. 4-'73 Bolt Bevanek and Newman Inc.

update will be triggered by changes ir. these states, as well as

by changes in delay.

These state3 can be applied not only to individual links,

but to entire paths as well. A path is "congested" if it has at

least one oongested link. A path is "maximally loaded!! if it has

no congested links but at least one maximally Loaded link. Paths

which are neither congested nor maximally loaded are
","underloaded." When specifying our multi-path algorithmi, we

described a procedure for computing the residual capacity from a

source node to a destination node along a specific path, given

the residual capacities of the individual links. This procedure

Sinvolved a small modification of the SPF algorithm, and a new

-algorithm called CAA. With a suitable bit-coding of the link

states (e.g., Qongested = 0, maxi:,,ally loaded = 1, underloaded

2), this procedure can be run without change to associate a state

with each path from a given source node to a given destination

node. If single-path routing is in effect, each source node can

associate one of the three soates uniquely with each destination

node. Thus we can speak ot a destination node as being in, e.g.,

the congested state. r-om the point of view of a particular

Ssource node.

The way in which congestion control is imposed on traffic to

Sa particular destination will depend on the state of the
destination= When a destination transitions to the congested

2
I , -291

Report No. 4473 Bolt Beranek and Newman Inc.

state, controls must be applied. As long as the destination

remains in the congested state, the controls must gradually be

made tighter and tighter (i.e., the throughput from the source to

the destination must gradually be made less and less). At some
j

point, the amount of control will be !'ootimal," and the

destination will enter the maximally loaded state (assuming, of

course, steady-state flows and no change in path). While a

destination is in the maximally loaded state, the amount of

control exerted on traffic to it should be held constant. While

a destination is maximally loaded, increasing the throughput from

the given source would overload it, while decreasing the

throughput would result in an underload. When a destination

enters th1e underloaded state, controls can be loosened slightly.

We do not. t howeveer , want to remove all con 4 .rols on packets to

.hat deStination, since it iS possible th:al doing 5o will result

in overload; pu!.tJng the destina;±on right back into the

congested State. Rather we want ,to loosen the controls

graduallyt in ;he hopn that the destination will eventually reach

t h the maXiMIa _ -V laded st'Ate, at which point the contro!s can be

clamped. it may even bz de sirable to Prevent an increase in

th•r•ougpht unt, u the destination remains underloaded for a

certain period of time; this should enhence the Stabll"t- of the

scheme.

-'-

S Report No. 4J473 Bolt Beranek and Newman Inc.

We have not yet spoker cf the sort of "controls" to be used

in this scheme. There are many different sorts of controls we

might wish to investigate. A very simple sort of control scheme

might attempt to lincit tVe number of packets to a given congested

destination which can simultaneously reside on the modem output

queue of their source node, At present, the ARPANET allows eight

packets to be on a mode,. output queue simultaneously, with no

restrictions at all as to haw many may have the same source or

destination. One means of applying congestion control would be

to associate with each destination D a number c(D), 1<c(D)•8,

such that no packet originating from this IMP for oestination D

can be enqueued for modem output if there are already c(D)

packets on the queue. At IMP initialization time, the values of

c(D) would be set to 8 for all D. Whenever a destination D

enters the congested state, c(D) would be set to some lower

value. Periodically, the values of c(D) would be decreased by 1

for all destinations D which are in the congested state.

However, c(D) would not be allowed to decrease below 1. Whenever

a destination D enters the underloaded state, c(D) is increased

by 1. The value of c-D) is increased by 1 periodically, until it

reaches 8, as long as D remains in the underloaded state. If

destination D is in the maximally loaded state, c(D) is ..eft

unchanged.

EI-293_
_

Report No. 4473 Bolt Beranek and Newman Inc.

Note that the amount by which c(D) is increased or decreased

need not be uniform, but can be a function of c(D) itself. For

the sake of fairness, we may wish to try to equalize the flows to

a particular destination from the various sources, instead of

permitting one source to have a very large flow while forcing

another to have a very small flow To effect this equalization,

c(D) should be increased by a large amount if it is small, and by

a small amount if it is large. If it is necessary to decrease

c(D), it should be decreased by a large amount if it is already

large, and by a small amount ctherwise.

This sort of control should be relatively easy to implement.

It may be particularly appropriate if one is worried about

congestion being caused by a few sources which create large

amounts of datagram traffic. Thus in the ARPANET, a particularly

worrisome source of potential congestion is the ability of speech

hosts or internetwork gateways to bombard the network with

datagrams, which b~pass the end-end flow control mechanism. If

the scheme just outlined were to be applied only to datagrams (so

th3t c(D) would specify the number of datagram packets to D which

may be on a modem output queue simultaneously, with no

restrictions on other packets), it is possible that this

potential source of congestion would be eliminated. Furthermore,

the scheme so restricted would have no effect on non-datagram

traf7ic; it would control only that class of traffic which needs

to be controlled.

- 294 -

Report No. 4473 Bolt Berane.k an' Newman Inc.

We have suggested that controls be placed only at thr source

node. It is worth considering whether the same controls should

not also be applied at intermediate nodes. Whereas ?pplying

control only at the source node causes excess traffic to remain

queued outside the net, applying controls at intermediEte nodes

can cause traffic to back up within the network. Since the

latter effect is much less desirable than the former, it seems

preferable to apply controls only at the source. However, this

should be tested through the use of simulation.

A disadvantage of this meatis of control is its coarseness

and inflexibility. If a destination is still cong.'sced even

though each source node will enqueue only one packet at a time

for that destination, the proposed scheme allows no further

method of reducing the flow to the congested destination.

Furthermore, when increasing or decreasing the maximum allowable

flow, one does not have very fine control over the step size.

Also, the precise nature of the "one packet at a time"

restriction depends on the queue length at the soirce, as well as

the characteristics of the line. This may make the e. ects of

the scheme difficult to understand, and may make it more

difficult to liring about fairness. Therefore it is desirable to

consider a somewhat more complex but more flexible tueans of

controlling the flow. One possibility is to use a method irimilar

to that used in the multi-path routing algorithm. Eac0 source

-295-

Report No. 4473 Bolt Bersnek and Newman Inc.

node would measure its flow to each destination node D (call it

f(D)). The flow measurement would be suitably smoothed over a

measurement interval. The control variable c(D) would specify a

amaximum amount of flow a2Lowable from that source to destination

D within a fixed interval. Initially, c(D) would be stt to

infinity for all values of D. When destination D enters the

congested state, c(D) is set to some fraction of f(D), The value

of c(D) is periodically decreased as long as D remains in the

congested state. When D enters the uncongested state, c(D) is

increased, and it continues to be increased periodinally as long

as D remains in the uncongested state. If D is in the maximally

loaded szate, c(D) remains constant. Note that when a path

becomes congested, the initial controls are based on f(d), rather

than c(D). This is necessary, since, in such a situation, c(d)

may be much larger than f(D) and it is known that f(D) is already

too large. Of course, the fraction of f(D) to which c(D) is set

is a parameter, as are the amounts by which c(D) may be increased

or decreasec,, Optimal values for these parameters will have to

be determineci empirically.

We have yet to discuss the way in which it is determined

whether a given link is in the congested state, the maximally

loaded state, or the underloaded state. There will have to be a

measurement process vt each nose which deterrmines the state of

Sthat node's outgoing link,,. The measurement process must be such

296 -

Report Nv. 44.73 Bolt Beranek and Newman Inc.

Sthat it declares lines to be underloaded only if the node itself

is underloaded. Thus the measurement process is similar to that

which we prcposed for the multi-path routing algorithm. It can,

however, be much simpler, since it need not specify the precise

a moun by which a line is underloaded or overloaded. In the

ARPANET, empirical investigation has shown that certain easily

detectable events are highly correlated with (and causally

related to) various sorts of overloads. If a link is overloaded

(i.e., an attempt is being made to send more than 50 kbps of

traffic on it), large numbers of packets will be refused because

there are no logical channels for them. If the node's buffer

space is overutilized, many packets will be refused due to a lack

of buffers. A heavily utilized CPU tends to produce long TASK

queues. The TASK queue length rarely exceeds two unless the CPU

is overutilized. Therefore, by keeping a count of the number of

refusals plus the number of times a packet was placed on the TASK

queue while two or more packets were already queued, one can get

a good indication as to the loading of a node and its links.

Refusal counts would be kept separately for each link; the !ASK

queue length count would be common to all links. We will refer

to these counts as "congestion counts," and will mark a line as

being in the congested state when its congestion counts exceed a

"certain threshold within a certain time interval. In order to

distinguish a true, steady-state overload from a momentary surge,

it may be desirable to require the congestion counts to exceed

f2I
- 297 -

Report No. 4473 Bolt Beranek and Newman Inc.

the threshold in several successive intervals (or in k out of n

successive int~ervals, where k and n are parameters) before

declaring the line to be in the congested state, . line can be

regarded to be in the maximally loaded state whenever its

congestion counts are below the "congestion" threshold for

several successive intervals, but are above zero. It is

possible, however, that this measurement technique will not

distinguish between "maximally loaded" aod "underloaded," since

surges in traffic on an underloaded line may cause the congestion

counts to take on small but non-zero values. If this turns out

to be the case, we could try to refine the measurement by also

counting "near-refusals," i.e., packets which, although not

refused, take the last buffer or logical channel. A line will be

declared to be underloaded as long as it is neither congested nor

maximally loaded.

This congestion control scheme, if implemented in the

ARPANET, would add very little overhead on the lines, since only

two bits per line would need to be added to each update (a

maximum of 10 additional bits), and there are already several

unL ad bits in the update packet. There might be some increase

in the frequency with which routing updates are sent, since

update generation will be triggered by changes in congestion

state, as well as by change in delay. However, since the

controls have been designed to operate in a smooth manner, and

- 9
-298-

Report No. 4473 Bolt Beranek and Newman Inc.

since the uontrols are tightened or loosened periodically without

the need for additional updates to be received, we would not

expect the congestion state of a lin6 to change much more

frequently than the delay in the line. As long as delay changes

are more frequent then congestion state changes, the frequency

with which routing updates are generated will not increase.

The congestion control scheme described here is certainly

more efficient in its use of line bandwidth and nodal bandwidth

than is the congestion control scheme which is integrated with

our multi-path throughput-oriented routing algorithm. The latter

requires a more complex measurement process in each node to

determine the residual capacity of each link, and it requires

larger updates in order to disseminate this information. It may

seem, however, that the latter scheme would also be much more

effective at controlling congestion. It does, sIfter all, provide

a more precise indication of the amount cf residual capacity
along each path, enabling source nodes Ic effect their throughput

controls with a greater degree of accuracy. However, as we have

discussed in section 4.8, this additional accuracy can only be

achieved on the assumption that changes in the identity of a path

to a given destination occur much less frequently than changes in

the residual capacity along the path to the destination. In a

throughput-oriented routing algorithm we can force this

assumption to be true (see section 4.8). In a delay-oriented

-299-

Report No. 4473 Bolt Beranek and Newman Inc.

algorithm, however, we cannot make any statement in general about

the frequency of path identity changes relative to the frequency

of residual capacity changes along a non-changing path. Trying

to base our throughput controls on precise measurements of

residual capacity, therefore, may be as likely to reduce accuracy

as to enhance it.

The congestion control scheme described here should work

well even when an offered overload of traffic causes the

delay-oriented routing to oscillate. For example, suppose a

source node attempts to send 70 kbps of datagram traffic to a

single destination, in the ARPANET, with it.P 50 kbps lines and

single-path routing, the load cannot be handled. With no

congestion control, any path used will be congested, and each

line on the path will experience extremely large delays. This

will cause the routing algorithm to switch from p•ath to path,

even using somie very long and unsuitable paths, in a futile

attempt to find a path wiich can handle the traffic. With the

proposed congestion control scheme, throughput controls would be

in effect, with gradua'll increasing severity, no matter what

path is being used. Eventually the throughput controls would

force the traffic load down to a feasible amount, enabling the

routing algorithm to settle on the true path of least delay.

This is precisely the sort of corngestion control that would be

needed in the ARPANET to prevent congestion due to datagrams.

-300-

Report No. 4473 Bolt Beranek and Newman Inc.

7. SIMULATION NETWORK DESCRIPTION

7.1 IMP

Each ARPANET IMP in the simulation is represented by a

Simula object, also called an IMP. The I!P is just an object

which contains some data structures, pointers to all the active

IMP processes, and some procedures. Descriptions of the IMP

processes (Task, ModemOut, ModemIn, HostOut, HostIn and Timeout

processes) are to be found in the following pages, as are the

functions which implement routing and buffer allocation.

The IMP's other task is to create and initialize the IMP

processes and to create the local host. Descriptions of the

parameters passed to the processes can be found under the

description of the processes themselves.

7.2 Host

There is one host per IMP. Each host is a class which

co 1,bains some data structures and some procedures. Each ho,,t has

(a pointer to) one packetSink process which is responsible for

accepting packets from the net, an array of (pointers to)

messageGen processes which generate messages for each

destination, and a messageOut process which transfers the

messages to the IMP. In the current simulation there is no

distinct.on between destination IMP and destination host, since

there is just one host per IMP.

-301

Report No. 4473 Bolt Beranek and Newman Inc.

The host implements two procedures, Start and Close. Start

takes a destination IMP number, the average message rate (in

messages per unit of simulated time), and the average message

length, and starts p a messageGen process to that destination

sending at that rate. if there already was a generator to that

destination, it is closed. Close takes the destination IMP

number and stops the messageGen process which is sending to that

destination. The process is then garbage collected.

I The messageGen process is a loop which waits for a randomly

determined period of time and then generates another message.

The time between message "arrivals" is determined by calling the

library routine for a negative exponential distribut'.on, whose

only parameter is the average message rate. The average message

rate is specified in the call to Start which created this process

and is passed as a parameter. The other two parameters, also

supplied by the call to Start, Lre the destination for all

messages from this generator, and the average message length.

The message length is selected at random from a negative

exponential distribution with the given mean. When each message

is created, the source, destination, and length fields are filled

in. The creationTime field is filled in with the current time.

Finally the message is put on messageOut's queue.

MessageOut pulls messages off its input queue, and for each

message, calls HostInterface in the IMP's HostIn process.

302 -

4.

Report No. 4473 Bolt Beranek and Newman Inc.

HostInterface copies the message into a packet, fills in the

nodentryTime and netEntryTime fields, and puts the packet on

HostIn's input queue. When HostInterface returns, MessageOut

takes the next message off its queue.

The packetSink process is started by the host when the host

is started by the local IMP. The packetSink process has one

parameter, the processing time per packet. This is set by the

command interpreter ihen the host is created, and may be changz2

by the appropriate command.

The packetSink process has an input queue. It waits till a

packet arrives on the queue. then removes the packet. The total

niet delay is computed by subtracting the time the packet entered

the net (which is given in the packet) from the current time.

Then th: process waits for its service time, returns the packet

to the Simula garbage collector, and loops to wait for another

packet.

S7.3 Task

There is one task process per IMP. The IMP starts the task

process, specifies the priority at which it will run, and the

amount of time each packet takes. Task has the lowest priority

below Timeout (see Sec. 7.10 for details). There are no

facilities for setting or changing this. The service time is a

parameter to the process, which is set when the IMP is created,

and may be changed by the appropriate command

-303-

Report No. 4473 Bolt Beranek and Newman ino.

Task has two queues: a queue for data packets, and a queue

for routing update packets. All the routing updates are always

processed before any data packet. If there is a routing update

on the queue it is removed, and Task calls the IMP routine

ProcessUpdate. When there are no routing updates, task checks

its queue of data packets. If there is a packet on the queue,

task removes it and attempts to pass it either to the HostOut

process or to one of the ModemOut processes. If the channelBit

specified in the packet is the same as the receive flag for the

line and channel the packet came in on, then the packet is a

duplicate; it is discarded. If the packet's destination is this

IMP, then Task attempts to allocate a reassembly buffer. If it

can allocate a buffer, it passes the packet to the hostOut

process to be output to the host, otherwise the packet is

discarded.

If the packet's destination is some other IMP, then Task

attempts to allocate a store-and-forward buffer. If it cannot

allocate a buffer, the packet is discarded. If it can allocate a

buffer, it looks up the destination in its IMP's routing table,

which specifies the output line to use. If the output line is

specified as zero, then the destination IMP is inaccessible; the

packet is discarded. If the output line is not zero, Task

attempts to allocate a logical channel on that line (by calling

the routine "GrabChannel" in the output process for that line).

- 304 -

"Report Mo. 4473 Bolt Beranek and Newman Inc.

aif channel cannot be allocated, the packet is discarded. If a

channel is allocated, the packet is put on the queue of 'he

correct output process. If the packet is passed to hostOut or to

one of the output processes, or is dropped beCause the

destination IMP is inaccessible, then it must be acknowledged.

Task calls the routine AckPacket in 'te Modemin process fur the

line on which the packet arrived; this routine flips the receive

flag for the channel and calls the ModemOut routine Ack which

sets a flag indicating that an acknowledgment should be sent, and

wakes up ModemOut if it is asleep. If the packet was a

duplicate, Task calls the Ack routine in Mod.;mOut to send a

duplicate acknowledgment. Task then loops back to check its

queues.

7.4 Routing and Forwarding

Forwarding in the present aimullation is simiple. Task looks

up a table in the IMP which tells it which output line tJ use to

send a packet to a given "eiiation. t....i • • tnh process

involved in building that table.

Each output line has a current delay measure and a delay

accumulator. The current delay is used by the routing algorithm

in calculating the shortest (minimum delay) paths. The roucing

algorithm is implemented in a single function, UpdateRouting, in

each IMP. The function uses a shortest path first (SPF)

-305-

V4

Report No. 441173 Bolt Beranek and Newman Inc.

algorithm to calculate the minimum delay path from its iM? to any

other. As thie shortest path to any IMP is calculated, the output

line to use in forwarding is noted in the table.

7.5 Delay Measurement

When a packet arrives at a node. via a call to either

HocstInterface or ModemInterface, the time is noted in the field

"1 1nodeEntryTime." When a packet is transmitted out a line the

.in•e is noted in the field "nodeExitTime. t " When the line

protocol (qov.) gets an acknowleIgment for the packet, the node

delay (nodeExitTime - nodeEntryTime) is computed and the routine

TallyDtA is called. This routine increments the packet counter

tota!'. acktts, and adds the delay into the delay accumulator

totalDe]. Although TallyDel is called by ModemInput, it is

implemented as part of ModemOut, since that is where the relevant

data structures are kept.

Periodically, tie slow Timeout routine calls the IMP

routine, AverageDelay, which is responsible for maintaining the

delay threshold, calling the ModemOut routine which averages

delay, and deciding whether to send out an update. First, the

IMP routine reduces the delay threshold by a fixed amount; then,

for each line, it calls the ModemOut routine AverageDelay which

computes the average delay, stores the result in avgDel, and

returns the diiference between avgDel and the current delay del.

-306-

~~M 4

Report Nj). 4473 Bolt Beranek and Newman Inc.

If the difference is less than the threshold for any line, an

update must be sent out. First, the threshold is reset to ita

initial value; then, the just computed average delay is copied

into the current delay variable in eaeh output process, and into

the IMP's delay tables. Finally, the update serial number is

incremented, the update age is reset, and the IMP routine

SendUpdate is called to send out the update on each line.

7.6 HostOut

There is one HostOut process for each IMP. If we were to

implement multiple hosts, each host would have its own HostOut

process, just as each output line has its own output process.

When the HostOut process is started by the IMP, the IMP sets

its priority; the priority is set lower than HostIn and higher

than Timeout (see Sec. 7.10 for details). The serviceTime is set

when the IMP is created, and may be altered by the appropriate

command.

The HostOut Process has an input queue and a pointer to the

local Host. Task puts packets on the input queue. HostOut waits

for a packet to be put on the queue, removes it, executes some

simulated CPU time, adds the packet to the local Host's input

queue, and waits. When the local Host's packetSink process has

removed the packet, the HostOut process wakes up, returns the

packet to the Simula runtime system, and loops back to wait for

another packet.

-307-

SReport No. 4473 Bolt Beranek and Newman Inc.

7.7 HostIn

There is one HostIn process for each IMP. If we were to

implement multiple hosts, each host would have its own HostIn

process. HostIn is responsible for input of messages from the

host, and the division of messages into packets. Currently,

messages are not divided up, rather, it is assumed that all

messages from the host are single packet messages.

When the hostIn process is started by the IMP, the IMP sets

its priority; the priority is set lower than ModemOut and higher

than HostOut (see Sec. 7.10 for details). The serviceTime is set

when the IMP is created, and may be altered by the appropriate

command.

To transfer a message to the IMP, the host calls the routine

HostInterface, implemented as part of HostIn. HostInterface

allocates a packet for the message and puts it on HostIn's input

queue. HostIn takes it off the queue and gives it to the task

process.

HostInterface takes a message as an argument and attempts to

allocate a buffer. If a buffer cannot be allocated, the message

is discarded and the routine returns. If a buffer can be

allocated, the nodeEntryTime field is set to the 'current time,

the priority is read from the message, and the input line field

is cleared so Task knows that this packet came from the host and

L

- 30P -

=I.

Report No, 44773 Bolt Beranek and Newman Inc.

does not have to be acknowledged. Then HostInterface puts the

packet into the input queue and returns.

7.8 ModemOut

There is one output process for each output line in the IMP.

The output process implements procedures for allocating and

freeing logical channels on the line, and for computing the

average delay and invoking the routing computation for each IMP.

The output process contains a standard input queue, a pointer to

the line, the delay measurements, the send flag for each logical

channel, an array of packets to keep track of packets which have

been allocated to a channel but not yet acknowledged, and a 'lag

which is set if a packet is acknowledged while it is actually

being transmitted. Channel allocation and handling of

unacknowledged packets are described in Section 7.11. Delay

measurements are described in Section 7.5.

When the IMP creates a ModemOut process, the IMP sets its

priority. Each ModemOut process is given a different priority,

lower than ModemIn and higher than HostIn (see Section 7.10 for

details). The serviceTime is set when the IMP is created and may

be altered by the appropriate command.

The ModemOut code is in two parts. First, it checks to see

if there are old packets to be retransmitted or new packets to be

transmitted; if packets are waiting, it goes on to the second

-309-

S Report No. 4473 Bolt BeraneK and Newman Inc.

part, if not, it goes to sleep. The second section involves

actually p-tting the packets on the line.

In the first section ModemOut checks to see if there are any

packets sent but not acknowledged, that were sent more than

retryInterval units of simulated time ago, RetryInterval is a

parameter to Modcm-.Out which can be set at any time by the

corresponding command. If there are packets to be retransmitted,

it goes on to the second section. If not, it checks to see if

its inpat queue is empty or if it should send a r-:ll packet; if

there is nothing to send, it goes to sleep, otherwise, it goes on

to the second section. hhen ModemOut goes to si!ep, it can be

woken by task calling the transmit routine t3 send a packet, by a

wakeup to send an acknowledgment (see "line protoi':l'), or by a

periodic wakeul, from fastTimeout.

When there is a packet to be sent, ModemOut eiecutes

serviceTime units of simulated CPU time, copies the reccJ.v• flags

from the corresponding input line into the packet (see '"line

protocol"), clears the flag which indicates that there are

acknowledgments to be sent, adds the packet to the line's input

queue, and waits. When the line has transmitted the packet, it

wakes up the output process, which then checks to see if the

packet was acknowledged while it was being transmitted. It t

was, the channel is freed (see "line protocol") and the flag iR

cleared. Then the output process loops back to the first section

to check for more packets.

-310 -

Report No. 4473 Bolt Beranek and Newman Inc.

7.9 ModemIn

There is one ModemIn process for each input line in the IMP.

ModemIn contains the receive flag for each channel on the line, a

standard input queue, and a flag which, when set, indicates that

there is an acknowledgment to be sent. ModemIn implements a

routine, ModemInterface, which is called by the line to pass a

packet to the process, and a routine, AckPacket, which is called

by task to return an acknowledgment for a packet which has been

accepted.

When the IMP creates a ModemIn process, the IMP sets its

priority. Each ModemIn process is given a different priority.

The ModemIn processes have the highest priority, above the

ModemOut processes (see Sec. 7.10 for details). The serviceTime

is set when the IMP is created and may be altered by the

appropriate command.

When the line calls ModemInterface, it passes a pointer to

the packet from the sending IMP. First, the routine attempts to

allocate a buffer for the packet by calling the IMP routine

Grabpacket. If i;his succeeds, and the packet is not marked

"error" by the line, then all the fields of the old packet are

copied into the new packet, except that the line number is

changed, the priority is reset, and the node EntryTime is set to

the current time. The line number is changed since this is just

-311-

Report No. 4473 Bolt Beranek and Newman Inc.

the IMP's internal index for the line (or modem), not a unique

global number. The buffer is then added to ModemIn's (own) input

queue. If a packet cannot be assigned, the packet is discarded,

and the routine returns. If a buffer was allocated but the

packet was marked in error, then the buffer is returned, the

packet is discarded, and the routine returns. The packet from

the sending IMP is never changed.

The AckPacket routine simply flips the receive flag for the

specified channel and sets the flag which indicates that an

acknowledgment should be sent. It is described further in

Sectio" 7.11.

The ModemIn process waits until a packe. arrives on its

input queue (i.e., is put there by a call to ModemInterface),

executes serviceTime units of simulated CPU time, compares the

acks in the packet to the send flags in the output process for

this line, and frees the output channel where they are the same.

(For more details see Section 7.11.) If the packet is a null

packet, it is discarded; if it is not, it is put on task's input

queue and the process loops.

7.10 Priority Structure

Every process in the IMP has a separate priority, including

each separate ModemIn and ModemOut process. The order of

priorities, highest first, is: ModemIn, ModemOut, HostIn,

- 312

Report No. 4473 Bolt Beranek and Newman Inc.

HostOut, Timeout, Task. Within ModemIn and ModemOut, modem 1 has

the highest priority, followed by modem 2 and so on. Thus, for

an IMP with two modems the priority structure would be:

process priority

ModemIn(1) 1
ModemIn(2) 2

ModemOut(1) 3
ModemOut(2) 4

HostIn 5

Ho3tOut 6

Timeout 7

Task 8

The process scheduling is pre-emptive. That is, if a lower

priority process is running when a higher priority process

starts, then the lower priority process is suspended until the

higher priority process has finished. Therefore, the "service

time" of a particular process does not mean that the process

takes exactly that much sinmulated time, but rather that it must

be scheduled for that much CPU time. For low priority processes

such as Task, the elapsed time may be much greater than the

amount of CPU time used by the process.

- 313 -

Report No. 44713 Bolt Beranek and Newman Inc.

7.11 The Line Protocol

The line protocol is the mechanism used to ensure that one

and only one copy of a packet is passed from IMP to IMP. The

line orotocol incorporates facilities for acknowledging receipt

of a packet, and for discarding duplicates of a packet. The line

protocol uses logical entities callea channels. The number of

channels per line is currently fixed at 8. Only one packet at a

time can be unacknowledgced on any channel. The fields necessary

for the line protocol are ca-nied in the packet. They are:

an array of flags (1 flag per channel)

a channel flag

Ia channel number

in addition, the IMP keeps trauk of the line rumber in the

packet. At both the send and receive ends of each channel, the

line protocol uses flags called the send and receive flags. The

send flags for each line are stored in the output Drocess for the

line; the receive flags are stored in the input proc!ss. The

other participant in this process is the task process. The idea

of the line protocol, in short; is that successive packets on a

given channel get opposite values of the channwl flag, which is

,oiDed from. the send flag into the pacl._,- '-t carried over tChe line

to the receiving IMP, and copied into tiie receive flag,

I
Elk
___ - J.4

i [

Report No. 4473 Bolt Beranek and Newman Inc.

When Task removes a packet from its input queue, it first

6 checks to see if it is a duplicate. if the receive flag for the

line %nd channel is the same as the channel. flag, the packet is a

duplicate and is discarded. If the packet is accepted (for

forwarding or transmission to the host), Task calls the routine

AckPacket in the input process vhich received the packet. This

routine flips the receive flag and calls the routine Ack in the

output process, which sets a flag indicating that an

acknowledgment should be sent, and wakes the output prccess if it

is asleep. Any packet traveling in the opposite direction has

all the receive flags from the input process copied into the

outgoing packet by the output process, including the new value of

F the receive flag for the channel of the just arrived packet.

When the packet arrives at the input process of the other IMP,

the flags in the packet are compared with the send flags in the

corresponding output process. Any matches indicate .hat a packet

has arrived at the first IMP and has been accepted by Task. The

input process cal2s the routine Free in the output process for

each such channel. Fre'e flips the send flag (so the next packet

sent on that channel wiil get the opposite value channel flag to

the lest one), calls the routinie TallyDel to calculate the packet

deiay and update the delay accamulators, clears the UnackedPacket

array for this channel, and fr es the buffer.

-315-

Report No. 4473 Bolt Beranek and Newman Inc.

The output process also implements a routine GrabChannel for

allocating a logical channel. This routine takes the packet as

its argument and returns true if a channel could be allocated,

and false otherwise. The routine simply searches UnackedPacket

for a slot, and if it finds one, puts a pointer to the packet in

the slot, fills in the channel number and channel flag, and

returns true. If there is nc empty slot, the routine returns

false.

It is possible to tell, the difference between a packet which

has been allocated a channel but not sent, and a packet which has

been sent but not acknowledged, since in the former the

nodeExitTime is zero. The output process needs to make this

distinction correctly when it is deciding whether to retransmit a

packet, since packets are stored in UnackedPacket as soon as a

logical channel is allocated, before they are sent.

7.12 Routing Update Protocol

The routing update protocol is the protocol that ensures

that every IMP sees a copy of every update, and that duplicate.

old, or out-of-date information is ignored. Every update

contains a serial number, an age, and a retry bit. the serial

number is a mod 64 number which is unique (mod 64) for each new

apdate. The age is a 3-bit number which is set to 7 when the

update is created and counted down at 8-second intervals. When

-316-

Report No. 4473 Bolt Beranek and Newman Inc.

the age field reaches zero the update is neither discarded nor

broadcast to other IMPs. Each line has a timer for each IMP.

When the timer expires, the update for that IMP is sent out on

that lin-, with the retry bit set. The timer is shut off when the

update is echoed by the receiving IMP. The retry bit is simply a

request for an echo.I Each IMP must keep the age and serial number of the latest

update from each other IMP. When a new update arrives it

supersedes the current update if the current update has an age of

zero, or if the new update has a later serial number (mod 64)I than the current update. If it does, the age, serial number, and

delay information are copied from the new update into the IMP'sI tables.

The IMP routine TimerTick (called by fastTimeout every fast

tick) decrements all non-zero timers; should the timer for any

IMP and line be decremented to zero and the update for that IMP

has non-zero age, it is transmitted over that line with the retry

bit set and the timer reset to 3.

The IMP routine AgeTick (called by slowTimeout every 12 slow

ticks) decrements the age of every update. No action is taken

when the age is decremented to zero, but updates whose age is

zero are never retransmitted by Timer7ick.

-317-

Report No. 4473 Bolt Beranek and Newman Inc.

7.13 Timeout Process

Each IMP has one Timeout process. When the IMP starto up

the Timeout process, it supplies as a parameter the perio-

between successive wake-ups.

Timeout process has a counter which counts up to 25 and is

then reset to 1. Normally when the process wakes up it calls the

routine FastTimeout. On every 25th execution, it calls

SlowTimeout and then FastTimeout.

FastTimeout calls the IMP routine TimerTick, which

decrements the update timers on each line. This is described in

Section 7.12. Each time FastTimeout runs, it checks a line to

see if it is idle (i.e., if the corresponding ModemOut process is

asleep) and, if so, it wakes the line so it can check whether a

retransmission or a null packet should be sent. FastTimeout

checks successive lines on successive calls.

SlowTimeout calls the IMP routine AverageDelay every 15

ticks, and the IMP routine AgeTick every 12 ticks. AverageDelay

is described under "Delay Measu-ement" and AgeTick is described

under "Routing Update Protocol."

7.14 IMP Time

Processes in the IMP take up time in one of two ways: they

run on the simulated CPU. or they wait for a specified interval

- 318 -

Report No. 4473 Bolt Beranek and Newman Inc.

to elapse. The latter is used to simu.ate the ticking of the

25.6 msec clock. Of course, a process may also go to sleep some

other way such as waiting for a packet to arrive on a queue, in

which case it may be later when it is woken.

We must simulate the situation where the IMP clock runs

either fast or slow, and may not be synchronized with either

"real" simulated time, or the clocks of other IMPs.

First, there is a parameter in each IMP process which is the

ratio of IMP clock to simulated time. This parameter is set by

the RATE subcommand. If this parameter is R, then the 25.6 msec

clock in fact runs every R * 25.6 msec, and a process whose

service time is S msec executes for R * S msec on the simulated

CPU.

Second, each IMP is started at a different time, specified

by the parameter OFFSET. Suppose this parameter is set to 0, and

assume the simple case where R = 1 (the IMP clock is neither fast

nor slow). Then the 25.6 msec clock will go off at 0 + 25.6, 0 +

51.2, 0 + 76.8 and so on.

This allows us to control the relationship between events in

different IMPs. If we want all routing updates to happen at the

same time, we can set RATE to 1.0 and OFFSET to 0.0. If we want

updates to happen at different times but in a synchronized way,

we can set RATE to 1.0 and OFFSET to particular values for each

- 319

Report No. 4473 Bolt Beranek and Newman Inc.

IMP. Finally, if we want to approximate the asynchronous

behavior of real IMPs, we can set both RATE and OFFSET to

particular values for each IMP.

7.15 Buffer Management

In the IMP, allocated buffers are divided into 3 classes:

reassembly, store-and-forward, and uncounted. Packets entering

from the host are allocated as reassembly. Packets entering from

a modem are allocated as uncounted. Task re-allocates (or

discards) packets on the basis of their destination: packets for

the local host are reallocated as reassembly; packets to be

forwarded to another IMP are reallocated as store-and-forward.

For each bufrer type, the IMP maintains a counter of the number

of buffers, and a maximum count. A buffer can be allocated from

a given type if the counter is less than maximum, and if certain

other restrictions are met. A store-and-forward buffer can be

allocated as long as there are more than three free (i.e.,

unallocated) buffers left. When a reassembly buffer is allocated

the request specifies a count parameter. If there are count

reassembly buffers available, and if, after allocating that many

buffers, there will be more than three free buffers left, then a

reassembly buffer can be allocateu. An uncounted buffer can be

allocated as long as there is a free buffer available. There are

no other constraints. It is also legal to allocate a

store-and-forward buffer for an output line whick. has no other

32S~- 320 -

Report No. 4473 Bolt Beranek and Newman Inc.

buffer allocated, even if this would cause the count to exceedI the nominal maximum.

The buffer limits are set as a function of the total number

of buffers a-qailable and the number of lines in the IMP. If the

number of lines is just one, then the calculation is done as

I. though the IMP had two lines. Let the (adjusted) number of lines

be M, and the total numbers of buffers be NUMBUFFERS. Then the

maximum number of store-and-forward buffers (SFMAX) is set to 6 +

2 * M, and the minimum number of store-and-forward buffers1.
(SFMIN) is set to 3 * M. If SFMIN is divisible by 8, it is

decreased by 1. Next, the maximum number of reassembly buffers

(MAXR) is set to NUMBUFFERS - SFMIN. Finally the maximum number

"of uncounted buffers is set to NUMBUFFERS.

3.
1.

-I.

t 31

Report No. 4473 Bolt Beranek and Newman Inc.

8. THE SIMULATION COMMAND LANGUAGE

* 8.1 Introduction

In the simulation, we need a way to specify, create and

modify IMPs, lines and hosts. It is also necessary to have a way

of netting up defaults in a convenient manner.

The general format of commands for defining and creating

IMPs, hosts and lines is:

<command> <object-specification> (arguments>

The format of the other commands is given in the list of commands

below.

For IMPs, the IMP number must be specified, and t'he number

of lines must be given when the IMP is being created:

IMP 53 3 <arguments>

For hosts, the host and IMP number must be specified:

HOST 2/53 <arguments>

which refers to host 2 on IMP 53. At the moment, there is only

one host per IMP, so the host number is ignored. To connect two

IMPs together one simply gives their numbers:

- 322 -

Report No. 4473 Bolt Beranek and Newnwan Inc.

LINE 53 60 <arguments>

except in the case of multiple lines connecting two IMPs, in

which case one must also specify the line number:

LINE 53 60 2 <arguments>

Each line must be specified in a separate command, multiple lines

are not yet implemented.

In order to change parameters, the commands IMP, HOST and

LINE are used. The command language interpreter will recognize

when an IMP, host or line is mentioned more than once, and

interpret all occurrences after the first as being for changing

parameters ratier than for creating the IMP, host or line.

The user will be able to set up defaults by using "models."

One can think of model in the sense of "model 316 IMP," but a

model is really just a set of defaults. A model is created in

much the same way as an IMP host or line:

MODEL <object> <number> <arguments>

where object is "IMP," "HOST" or "LINE," n~umber is the model

numter, and the arguments specify the model defaults. The

default model is 0, and model parameters not specified in the

model statement will bc defaulted to the model 0 default. That

is, model 0 gives the defaults for other models, as well as being

-323 -

Report No. 4473 Bolt Beranek and Newman Inc.

the default model for IMPs, hosts and lines whose model is not

specified.

If a model is specified when an IMP, host or line is

created, it must be specified first in the list of arguments.

When parameters are changed by a subsequent statement, the model

number must not be rene. id.

The <arguments> section of the command is used to specify or

change parameters of the IMP, host or line. The parameters which

can be specified are entirely arbitrary, and not at all

restricted by the command language, except that they must have

the general form:

<name> <value>

Typically, they will refer to timing parameters, error

rates, or tracing flags:

TASK 0.63 RETRANSMIT 10.0

ERROR 0.001 SPEED 9600

TRACE OFF DEBUG ON

In the case of parameters which may be different for

different lines, an alternate command form can be used:

<names>/<index> <value>

- 324 -

Report No. 4473 Bolt Beranek and Newman Inc.

where index is the neighboring IMP number that specifies which

input or output process will be affected. For example:

RETRANSMIT/54 60.0

The retransmit command sets the interval between retransmissions

of an unacknowledged packet. The above example sets this time to

60.0 (seconds), but only for the output line (and process) which

connects this IMP to IMP 54.

8.2 List of Commands

INIT ij

Initialize the number of IMPs to i and the number of simplex

-. lines to j. This command must occur before any IMPs, hosts or

lines are created. The number of IMPs mast be less than 100.

NUMBUFFERS n

Set the number of buffers in an IMP to n. This value

applies to all IMPs created after this statement, until another

NUMBUFFERS statement.

This commana will be eliminated and replaced with an IMP

commid, so that defaults can be set up using models, each IMP

can specify a value when it is created, and so on.

-325-

Report No. 4473 Bolt Beranek and Newman Inc.

FIXEDROUTING

Set a flag in every IMP so that delay computations and

routing updates will not occur. The IMPs routing tables can be

set with the ROUTE command, which allows the route to be given

explicitly, or with the UPDATE command, which forces the

specified IMPs to calculate the SPF route to each IMP. With this

flag set, the routing tables will never be changed, except by the

above commands.

RANDOMROUTING

Set a flag in every IMP so that packets will be forwarded to

a neighbor chosen at random. An output line is chosen, and if a

logical channel is available on that line, the packet is

forwarded; otherwise another random choice is made. If no line

has a channel available, the packet is dropped.

This command also sets th• fixed routing flag so delay and

routing updates will not occur.

ROUTE i n1 n2 n3 ...

Set the routing table in IMP i to n1, n2, n3 and so on.

This means that packets for IMP 1 will be forwarded via neighbor

n1, packets for IMP 2 will be forwarded via neighbor n2, and so

on. If one does not specify a neighbor for every destination,

omitted destinations will be defaulted to the last neighbor

mentioned.

- 326 -

Report No. 4473 Bolt Beranek and Newman Inc.

ii~j'jDEBUG il i2 i3
Set the debugging flags to ii, i2, i3 and so on. Each i is

IL either 0 or 1. Each debugging flag controls one particular piece

of debugging output.
r!o

The different flags are documented in Section 8.7, tracing

and debugging.

DEBUGFILE f

i Direct debugging output to file f. Simula restricts file

- names to six alphameric characters with a three-characterL
extension. L device name may be specified, but not a directory.

TRACE ii i2 i3 ...

L Set the trace flags to ii, i2, i3 and so on. Each i is

either 0 or 1. Each trace flag controls one particular piece of

trace output.

The different flags are documented in Section 8.7, tracing

and debugging.

TRACEFILE f

Direct trace output to file f. Simula restricts file names

to six alphameric characters with a three-charaCter extension. A

[device name may be specified, but not a directory.

-327-

Report No. 4473 Bolt -Beranek and Newman Inc.

IMP i n <arguments;

IMP i <arguments>

Create IMP i with n lines; or modify IMP i. The argument n

must be given ±f and only if INP i is being created (i.e.

mentioned in an TMP statement for the first time); i must be

positive:, and less than or equal to the number of IMPs specified

in the INIT statement. All IMPs must be created before the

simulation is started. See below fo" a list of parameters that

can be given in the argument list.

LINE i j <arguments>

Create or modify the simplex line connecting IMP J to 11P J,

Both . .P i and IMP j must have been created. See below for a

list of parameters that can be given in the argument list. The

nL.--her of lines created must be equal to the number of lines

specified in the INIT statement. All lines must be created

before the simulation is started.

HOST i/j <arguments>

Modify host i on IMP j. IMP j must have been created.

Currently there is only one host per iMP; i is ighoredo See

below for a list of parameters that can be given in the argument

list..

-328-

Report No. 4473 Bolt Beranek and Newman Inc.

MODEL IMP i <argumento>

MODEL HOST i <arguments>

MODEL IN E i <arguments>

Create or modify tne specified model. The parameters which

-tan be given in the argument list are the same as for the

specified real object. The argument i must be between 0 and 10

inclusive.

START s d r 1

Start transmittiag messages from IM? s to IMP d. Message

arrivals will be Poisson, with a mean message arrival rate of r.

The message lengths will be negative exponential with mean 1.

* -IMP s must have been criated; I must be positive: if r is less

than or equal to zero, the fl3w of r.essages from s to d will be

stopped. A subsequent START command with the same source (s) and

destination (d), overrides (rather than adds to) this command.

RUN t

Run the simulation for t secs. All 7HPs and lines must have

been created. After t seconds of si..nulated time, the program

will prompt for more cemmands.

-- 32

SI - 329-

Report No. 4473 Bolt Beranek and Newman Inc.

READ f

Read commands from the file f. Initially, the program reads
from the terminal. Multiple READ commands are stacked so that
when all commands have been read from f and executed, the program
will resume reading commands from after the READ command.

QUIT

Exit the simulation.

8.3 Parameters

There are two subcommand formats, depending op, whether the
subcommands are on a single line or several lines,

The single line format is:

so v sc V...

where sc is the subcommand and v the value. The multiple line

format is:

(s C v sc v ...

Ssc v so v

•i ~-330-

KReport No. 4473 Bolt Beranek and Newman Inc.

where line breaks may occur anywhere except between an sc and the

following v.

8.4 IMP parameters

TASK t task processing time is t seconds

MOD2MIN t modemin processing time is t seconds

MUDEOUT t modeout processing time is t seconds

TIMEOUT t timeout period is t seconds

DELAY t initialize live delay to t seconds

RETRANSMIT t retransmission periud is t seconds

HOSTIN t hostin processing tine is t

RATE r IMP clock runs at r times real time

OFFSET t IMP (and clock) will start running at time t

THRESHOLD t initial threshold for delay is t seconds

DECAY t Threshold will decay t seconds each period

TRACE ON/OFF turn tracing on or off for this IMP

DEBUG ON/OFF turn debugging output on or off for this IMP

8.5 Host parameter3

SINK t pack:z sink processing time is t seconds

TRACE ON/OFF turn tracing on or off for this host

DEBUG ON/OFF turn debugging output on or off for this host

1331

Report No. 4473 Bolt Beranek and Newman Inc.

8.6 Line parameters

ERROR r bit error rate is r

LAG t propagation delay is t seconds

SPEED s line speed is s bits/second

TRACE ON/OFF turn tracing on or off for this line

DEBUG ON/OFF turn debugging output on or off for this line

All times t, the error rate r and the line speed s must be

positive. Where ON/OFF is shown, the command must have ON or

OFF.

8.7 Tracing and Debugging

Tracing output, usually just a string of numbers, is

generated by the simulation for analysis by the statistics

package. This package reads a file of numbers and computes such

things as means and confidence limits. The tracing output is

designed to be easy to process rather than easy to read. A

typical piece of trace output might be generated when a packet is

accepted by the host, and contains information on the route taken

by the packet and the time taken to cross the network. A list of

the tracing output currently implemented is given below.

Debugging output, on the other hand, is designed to be

easily readable. It contains English text as well as numbers.

It can be used to produce a step-by-step account of the progress

- 3`2 -

L/

Report N`o. 4473 Bolt Beranek and Newman Inc.

i p of every packet through the simulator, or to check on the correct

operati, of the protocols. Debugging output is provided for

SIievery process, and is generated both when the process wakes up

and discovers something to do, and when it has done it and is

SU about to go to sleep. A list of the debugging output currently

implemented is given below.

- Tracing and debugging output are generated by identical,

parallel mechanisms. There is a file for tracing output,

specified by the TRACEFILE statement, and a file for debugging

output, specified by the DEBUGFILE statement. The files may be

the same. Each IMP, host and line has a flag which turns tracing

on and off, controlled by the TRACE subcommand, and a flag which

turns debugging on and off, controlled by the DEBUG subcommand.

There are a number of global flags, one for each event which may

produce tracing output. These flags are controlled by the TRACE

command. If the event occurs in an IMP, host or line which has

its local tracing f•ag set, then tracing output is generated, if

and only if, the global tracing flag for that event is set. That

is, output is generated only if both the local flag and the

global flag are set. There is a similar set of global flags for

debugging output, controlled by the DEBUG command. A list of

flags is given below.

The default file for both tracing output and debugging

output is the device "NUL:", which discards all output. The

-333 -

Report No. 4473 Bolt Beranek and Newman Inc.

initial value of all flags is off. Thus, in order to get any

tracing output at all, one must specify an output file by using

the TRACEFILE command, set the global flags for the events one is

interested in tracing by using the TRACE command, and set the

local flags in some number of IMPs, hosts or li Os. Note that

one can use the model statement to change the default value of

the local flags from off to on, In order to get debugging

output, one must use the corresponding commands, DEBUGFILE and

DEBUG.

The file for output, the global flags, and the local flag in

each IMP, host, or line, may all be set or changed in the middle

of a simulation run. The new setting will take effect

immediately (i.e., at the simulation time at which the simulation

returned to command level).

8.8 Global Debugging Flags

The flags are specified by index:

1 task process (IMP)

2 modem input process (IMP)

3 modem output process (IMP)

4 hort input prccess 'IMP)

S5 host output procebs (IMP)

6 timeout process (IMP)

-334 -

SReport No. 4473 Bolt Beranek and Newman Inc.

I V7 input process (line)

8 output process (line)IL
9 delay measurements (IMP)

10 routing updates (IMP)

11 routing changes (IMP)

12 message output process (host)

13 packet input process (host)

14 IMP-to-IMP link protocol (IMP)

All of debugging output is in a standard form:

process i j I time n [m] even" [otherI

Process is the name of the process. For IMPs, i is the IMP

number and j is either the neighboring IMP number (for input and

output processes) or is omitted; for hosts, i is the IMP number

and j will be the host number when multiple hosts are

implemented; for lines, i and j are the IMP numbers on each end

of the line. Time is the current simulation time. For data

packets, n is the packet number and m is omitted; for update

packets, n is the originating IMP and m is the serial number.

Event is a descriptive field; a packet may be logged as it is

taken off a queue, or forwarded to another process, or dropped.

In each case the event field describes exactly what happened.

The final fields, if present, give such information as network

delay or logical channel number.

-335-

Report No. 4473 Bolt Beranek and Neaman Inc.

Omitted fields are filled with blanks so that all fields are

lined up.

8.9 Tracing Output

There is only one tracing output implemented so far. When a

packet arrives at the destination host, if tracing flag 1 and the

tracing flag for that host are set, the following fields are

output:

the source and destination IMP number

the priority

the time the message was created

- the time the message entered the network

the network delay

the packet length

the number of IMPs in the route taken

the route taken by the packet

- 336 -

Report No. 4473 Bolt Beranek and Newman Inc.

9. PROBLEMS IN THE ANALYSIS OF SIMULATION DATA

In the process of building our simulation facility we have

devoted a great deal of effort to developing both a methodology

and a set of automated tools for the rigorous analysis of

simulation data. The general problem which this methodology must

address has two components: estimating the values which

performance measures take on in a given simulation model and

comparing the performances of two or more different simulation

models. In this context, we associate a strict meaning with the

term model, namely, a given model is defined by a given

simulation program and input parameters. Thus, two different

models may have grossly different simulated protocols or may have

the same protocols but different input parameters.

One can give additional clarity to the problem which an

experimental methodology must acress with tie following example.

Suppose that one is given two alternative routing algorithms,

each of which has 3 parameters. Each of these parameters can

assume one of 10 values. Suppose further that one is given a

performance criterion (say, mean packet delay) and a range of

possible traffic matrices and network topologies. It is obvious

that deciding which algorithm is "best" is a very complex

problem. For a given algorithm and choice of parameters, one

must estimate the value that the performance measure assumes for

each traffic matrix and topology. (As we shall see, this is, in

"-337-

Report No. 4473 Bolt Beranek and Newman Inc.

itself, a difficult problem.) For a given algorithm, one must

estimate which combination of parameter choices yields the "best"

performance. Finally, one must compare the "best" Derformance

achievable for the two different routing algorithms. It is

important to note that the difficulties associated with this

analysis are not solely related to mathematical rigor. If one

investigates all combinations of algorithms and parameters and if

one proceeds at the healthy clip of two simulation runs per day,

the problem as stated is, for all practical purposes, unbounded

in time, requiring years to solve.

In the theory of experimental design, an input variable is

called a "factor" and the value it assumes in a given experiment

is called its "level." A factor may be qualitative or

quantitative, e.g., it may be an algorithm or an input parameter.

There is a large body of literature davoted to the design of

so-called factorial experiments in which one attempts to

efficiently estimate the impact of different factors and

particular levels of factors upon performance, and to rank these

effects [3]. Our implementation of these techniques will be

discussed in a subsequent" report. In this report we confine our

attention to the more basic problem of determining, with

confidence, the performance of a given simulation model. This

area, cer-tral to the analysis of simulation experiments, is quite

difficult; we have found that a satisfactory solution requires a

-338-

Report No. 4473 Bolt Beranek and Newman Inc.

number of approximate techniques drawn from the areas of

statistics and time series analysis.

In the following section, we define the elementary

statistical concepts employed in parameter estimatlon. In the

"subsequent sections, we discuss the problems encountered when one

I attempts to apply these concepts to the analysis of simulation

data, the methodologies used to overcome these difficulties and

the way in which these approaches are implemented in our analysis

I {routines.

- I

& I
j -- ___

Report No. 4473 Bolt Beranek and Newman Inc.

9.1 Basic Statistical Concepts

A particular network simulation experiment might typically

takt the following form. A stream of random numbers is used to

generate packet interarrival times, packet lengths, nodal

processing delays, etc. A finite number of simulated packets are

produced and, for each packet, the end-to-end delay is recorded.

These end-to-end delays are averaged and the resultant number is

taken to be the measure of the performance of the particular

model being examined.

This description suggests a fundamental problem. At the end

of the experiment, one does not know the "true" value of the mean

packet delay belonging to the model. Instead one has an estimate

for the mean delay which is dependent upon the specific random

number sequence used in the experiment and the number of packets

generated. This estimate, which is known as the sample mean, is

itself a random variable which may be very far from the "true"

system mean. A different random number stream and a different

number of observations might have yielded grossly different

results.

The analysis of simulation experiments requires the ability

to estimate, with -onfidence, the value of some system property

based upon observations made upon the system during a finite

interval of simulated time. Thus, two questions are immediately

#11 -_ 340-

Report No. 4473 Bolt Beranek and Newman Inc.

posed. Can one determine how good an estimate is? Will

additional observations produce a better estimate? This section

lays the groundwork for an attempt to answer these questions by

presenting the elementary defin-.tions and theorems drawn from

probability theory and statistics which are used in the theory of

parameter estimation. As was suggested in the introduction to

this chapter, few of these concepts directly carry over to the

analysis of simulation experiments. The necessary modifications

are discussed in the next section.

Definitions

Given a random variable X which can assume discrete values

[{X1, its mean is defined as:

Eq. 9-1 'X = L(X) = XkPx(Xk)
all k

where Px(Xk) is the probability that the variable X assumes the

value xk. If X is a consinuous random variable, i.e., the

probability that it assumes any particular value x is zero for

all x, then

Eq. 9-2 J dx fx(x)

-341-

Report No. 4473 Bolt Bleranek Cand Newman inc.

where f (dx Ls the probability that the value of X is in the

interval (x,):+dx] The functions Px(,) and fx(x) are called the

Sprobarility mabs and probability density functions of the

distribution.

The second central moment of tte variable X, or variance, J.s

defined as:

S: E[(X -)]

Eq. 9-3 cx

The standard deviation of X is defined as the square root of the

variance:

'q. 9-4 ox =

The preceding equations are drawn from probability theory.

In actual experimentation one operates in the domain of

statistics, in which one does not have a known probability

distribution at one's disposal but must infer information about

an unknown underlying distribution from a finite set of

observations made upon a random variable which has that unknown

distribution. In other words, one is given (Xi : 1i<_n}, a set

of n observed values for some random variable, and one attempts

to estimate parameters associated with the underlying

- 342-

L

Report No. 4473 Bolt Beranek and Newman Inc.

distribution from which the {Xi} are drawn. In order tc

accomplish this end, one defines an estimator, On , of a

parameter, 8 , of X to be a random variable which depends upon
A

toe observations X I..Xn. Onz says that an estimator Onof 0 is

unbiased if

Eq. 9-5 E[-n] E[=]

One says that it is consistent if

Eq. 9-6 Jim ?rob [I6 -n 1 < C] =

A

If the above eqution holds,9n i Ad to converge in probability

to e . £hus, an unr,-ased estimator will have as its expected

value the true valuo of the parameter. A consistent estimator

can be expected to be increasingly accurate as the number of

observations from which it is produced increases.

Of particuar importance are estimators for the mean aid

variance, called the sample mean and sample variance. The sample

mean of a random sample X1 , ... ,Xn is given by:

n
Eq . 9-7 ;, I X

3=4

!!~- 343 -

Report No. 4473 Bolt Beranek and Newman Inc.

.The sample variance iL given by:

n

Eq. 9-8 s = 1y (Xi _
1=1

While the ability to estimate means and variances is

important, it is also important co determine the range of

possible errors in such estimates. In order to compu.e the

expected error for an estimate, one introduces the notion of a

confidence interval. We say that an interval [- ,x + 6] is a

(1- ct) confidence interval for a parameter 8 if the probability

that the true value of 0 lies in the interval is 1- (. Thus, if

the .95 confidence interval for the mean packet delay is

L.07, 1.10] seconds, there is a 95% chance that the "true" value

of the mean delay is great.er than or equal to 1.07 seconds and

less than or equal to 1.10 seconds.

Distributions

There are three probability distributions which will be

particularly important in the following material. The first is

the normal distribution. For a normally distributed random

variable X, tle probability that X assunies values in (/, x V dx]

is given by:

- 344 -

Report No. 4473 Bolt Beranek and Newman Inc.

Eq 9-9 fx(x)dx exp {-(x-1I)2

Eq•x - d}
A 2cF'

where fX(X) is the probability density function. Here V is the
2

mean and a the variance of X. The standard notation for a

normal random variable of mean V and variance G is N(11 ,I 2)

A special and important case is the standard normal distribution,

N(0,1), whose probability density function is given by:

Eq. 9-10 fx(x)dx = exp i dx

A second important distribution is the chi-square

distribution [4]. If one has a family of n independent random

variables {Ui} drawn from N(0,1) then one can form

n
Eq. 9-11 X2 u2

n i

T he distribution of X 2 is called the chi-square di3tribution

with n degrees of freedom.

A tlird important disl tion is the Student-t distribution

[4]. It can be shown that th' s -ple mean; X, of n independent

observations drawn from N(,2 is normally distributed

according to N(V , 0 2 /n). Therefore

-3415-

Report No. 4473 Bolt Beranek and Newman Inc.

Eq. CI-12 U =(-
oI

is from N(0,i). In real experiments, however, one does not know

so that it must be estimated from the observed sample.

Thus, one replaces a in the above formula with the sample

standard deviation. One therefore defines a new statistic,

Eq. 9-13 tn (s -

the Student-t distribution with n-1 degrees of freedom.

Theorems

The concepts which will most directly concern us inK analyzing simulation experiments are those of the sample mean and

the confidence interval. There are strong theoretical reasons

for believing that the sample mean is normally distributed about

the true system mean. If one knows the variance of this

distribution, one can then compute a range of values within which

the system mean can be expected to fall. The computation of

confidence intervals consequently has two important

preconditions. First, the sample mean must be normally

distributed. Second, one must have a method of computing the

sample variance of the sample mean. It turns out that both of

- 346-

Report No. 447(3 Bolt Beranek and Newman Inc.

these preconditions are easily met for certain types of data

(although not for the sorts of data we will typically encounter

in simulation experiments). The following two theorems express

this fact.

Theorem 9-1 Given that {Xi i=I,..., n} is a sequence of

independent observations on a random variable X with

2 2mean • and finite variance c and that n and s are the

L sample mean and sample variance then

L• [• Eq. 9-14 (a) E[] = E[X] =I

(b) E[s 2] Var[X] a 2

2((c) Var[X I Var[X]/n a /n
n

((d) Z = (Xn - V)I a / A, for large n,L
, has the standard normal distribution N(0,1) [11.

Thus the sample mean and sample variance are unbiased

estimators of the mean and variance [1]. From ', one can also
I

conclude that the sample mean is a consistent estimator of the

= Lmean.

ShTheorem 9-2 "Given X1,..., X n, a random sample drawn from X whose
2

mean is v1 and whose variance a Suppose that X is normally

distributed or that n is large enough so that Xn can be

~ j considered to be normally distributed by Theorem Id above. Then

the (1- a) confidence interval is given by

34

Report No. 44 7 3 Bolt Beranek and Newman Inc.

Eq. 9-15 X ±E

where ii
E =z /& WE

z is the 100(1-S percentile of the standard normal,

2 2
distribution. In other words, if X is distributed according to

N(0,1) then:

Eq. 9-16 Prob [X > z =a

=2

If neither the mean nor variance are known and are therefore

estimated by the sample mean and sample variance, then the

100(1-cd)% confidence interval is given by

Eq. 9-I'(Xn + E

where

E t s/,/n
,a;n-1

a_;n-1 is the 100(l - a) percentile of the Student-t

distribution with n-1 degrees of freedom [1].

-348-

-Tr A*

Report No. 4473 Bolt Beranek and Newman Inc.

Hypothesis Testing

In the following material, we will frequently be concerned

with testing various hypotheses about some 'nderlying

distribution. For example, in testing the random number

generator, one obtains a sequence of observations X1 ,...,Xn and

tests the hypothesis that the {Xi} are uniformly distributed on

the interval [0,1].

One can think of a given sequence of

observations, [Y-,..., Yn 1, as a point, Y, in the "sample

space," S, of all possible sequences of observations. The sample

space is divided into two domains, a rejection region, R, and an

acceptance region, S-R, such that if the sample point I is in R

then one rejects .H0 , the hypothesis being tested. If Y is in S-R

then one accepts H0 [4].

Of course, there is always a possibility that a single

sample point will be in the rejection region R even if H0 is

actually true. For example, there is always a possibility that a

finite set of observations on a truly "random" number generator

will produce nothing but zeroes. If this occurs, one would

probably (although wrongly) reject the generator as being

non-random. This possibility is intimately related to the notion

of the significance level or si'.e of the test. One says that a

specific test of H0 is of size a if the probability that Y falls

349 -

Report No. 4473 Bolt Beranek and Newman Inc.

in R when HO, in fact, obtains is a . Thus, when testing H0

at the .10 level, there is a 10% chance of rejecting H0 when it

does, in reality, hold.

Report No. 4473 Bolt Beranek and Newman Inc.

9.2 Statistical Aspects of Simulation Experiments

There are a number of problems pertaining to the analysis of

simulation data. Some of these are quite fundamental in nature;

others are more practical. An example of the former is the

problem of determining the conditions under which it is sensible

to attempt parameter estimation from simulations. An example of

a practical problem is that of determining the conditions under

which it is feasible to attempt such estimation from a single

simulation run. An even more practical problem is that of

producing confidence intervals for system parameters from

simulation data.

The central topic of this section is a review of these

issues. Emphasis should be placed upon the word "issue" inasmuch

as only a few of the problems discussed admit of definite

answers. We have two general purposes in presenting this

material. The first is to convey a sense of the difficulties

inherent in what may seem, at first glance, to be a rather

straightforward problem, namely, computing average quantities

associated with ,imulation models. The second purpose is to

P. motivate the particular algorithms described in subsequent

sections. The material presented here is taken primarily from

the excellent discussion in [2].

-351-

Report No. 4473 Bolt Beranek and Newman Inc.

Steady State Distributions

The general problem in the analysis of simulation

experiments may be stated as follows. One is given a series of

observations {Xi :1<i<nl made upon a simulation model. For

example, the {XiI might be a 3equence of end-to-end packet

delays, recorded when each packet leaves the simulated network.

A typical goal might then be to compute an estimate for the mean

packet delay and a confidence interval around that estimate. The

heart of the problem is that one cannot simply apply the formulas

contained in the theorems of the preceding section to the data

[Xi} in a straightforward manner.

There is one important and immediately obvious difference

between a sequence of packet delays and the sets of independent

observations assumed in the theorems of the previous section.

Namely, there is a definite ordering associated with the sequence

of packet delays. Thus, if i>j then delay Xi was recorded after

delay X . This ordering is neither arbitrary nor meaningless.

Two packets which entered the network at the same time are more

likely to have encountered similar network conditions thin are

two packets which entered the network at greatly diffE .nt t.mes,

other things being equal. As an example, consider f sree packets

whose delays were Xi' X. and Xk and assume that these packetf

travers-ed the same route. If [i-jk<<;i-k!, then there . a fair

probability that jXi-Xj<<(IXi-X k. The series ot -eket ie •

- 'nh ordered and correlated in t-me.

-3`2-)

Report No. 4473 Bolt Beranek and Newman Inc.

These notions may be given a formal expression via a number

of mathematical concepts. We form a sequence of n random

variables, {Xi1, indexed on i. We express the values assumed by

the {Xi} in a particular experimant as {xi1. (Thus, in the

sequt..,ce of packet delays, x5 corresponds to the value that the

random variable X5 assumed in the particular experiment, i.e., x5

is the delay seen by the fifth packet.) We call the sequence of

random variables {Xi} a stochastic process.

For some stochastic processes the [Xi } are independent and
41

identically distributed (i.i.d.). Independence is used here in

the formal sense of statistical independence. That is, if the

{Xi} are independent, then a particular observation made upon Xm

yields no information about the expected value of an observation

made on Xn if m and n are not equal. Identically distributed

means that the probability distribution functions for all X. are1

the same. If the {Xi} are i.i.d., then a single function,

namely, the probability distribution function associated with any

particular X , yields a complete description of the system.

As was discussed above, we do not, in general, have

""atisticai irdep•_ lence for the sequence of packet delays.

Thi-. ev- 7 .L X. were to bp identically distributed, more

* Cormdtion thai, I-- Jistribution function would be required in

orae L- de&rib• the -nrire seq~ence [Xi}. For example, since

i, -rmatioa abro,,t a v,_ -n :-servation on X5 yields information

- 353 -

Report No. 4473 Bolt Beranek and Newman Inc.
S~L

about the expected value for X we also require the conditional

probability distribution, i.e., the distribution of X given LX5

in order to characterize the process.
I

This discussion, although abstract, is not academic. The
Li

facL L. -t the series of packet delays has internal correlations,

i.e., is autocorrelated, strongly impacts the attempt to estimate L

both the mean delay and a confidence interval for the mean. To

see this, we recall the important conclusions of the theorems of

section 9.1. In particular, for independent data, we were able

to conclude that the sample mean and sample variance were

unbiased and consistent estimators of the mean and variance. In

addition, we were able to find expressions for the sample mean,

the sample variance, and for confidence intervals about the mean.

For correlated data, those theorems do not apply. Hence, a more

detailed discussion of estimation for autocorrelated processes is

required.

To begin, we let X be a random variable computed as the

n j

mean of n successive observations on {Xi}, and var(X) be the

variance of Xn. One can then form the mean-square error:

Eq. 9-18 MSE(7-) = var(Yn) + (E[nn -n

U

~3541

Report No. 4473 Bolt Beranek and Newman Inc.

±he importance of the mean square error lies in the fact that if

the limit of the mean square error approaches zero as n

approaches infinity, then Xn is a consistent est.mator of •

the "real" mean delay [2]. This result can be understood

intuitively in that the convergence of the second addend in Eq.

9-18 to zero impli- 9 that E(X n) really does approximate p , for

large n; the convergence of the first addend guarantees

increasingly small confidence intervals about • , as n

increases.

If the {Xi} are i.i.d., if each X. is distribu",ed according

to X, and if the variance of X is finite, then one knows from

Theorem 9-1 that

Eq. 9-19 E(X n) =11

and that

Eq. 9-20 var(X n var(X)/n

Thus, for i.i.d. (X, var)-->Q, which implies VSE-->O. Thus,Thus,~~~~ friid{X} a.n

we have convergence in the mean which implies convergence in

probability. This convergence is reflected in decreasing

confidence intervals as n increases. Unfortunately, for

correlated time series data, Theorem 9-1 does not hold and

-i, - 355 -

Report No. 4473 Bolt Beranek and Newman Inc.

convergerce of the mean square error to zero is not obvious. It

is consequently clear that if one does not have independent {Xi},

it -is not guaranteed that one's estimates are consistent.I 'The preceding discussion is meant to be merely illustrative

of cne fact that the ability to make meaningful estimates of the

parameters belonging to a given system from a finite set of

observations uporn that system is not to be assumed. The question

then arises as to whether there exist general properties

belonging to stochastic processes which do allow for parameter

estimation. Such properties do exist; they are stationarity and

ergodicity [2].

For a given random variable, X, we define the probability

distribution function, FX, such that

Eq. 9-21 F x(x) = Prob [X < x]

The distribution function, which is the integral of the density

function, completely characterizes the particular random

variable. Given n random variables, {Xi}, the joint

distribution, FX I,..Xn' is defined such that

- 356 -

Silot

Report No. 4473 Bolt Beranek and Newman Inc.

Eq. 9-22 Fx °-., (x 1,'.'xn) Prob EX < xl ('' < xn]

If we are given a stochastic process {X i we can select, for

arbitrary il,...,in, Xi ,Xi ,...,Xi , and form the joint
1 '2 n

distribution function. If one has

Eq. 9-23 ' ,X. (x1,.,Ox n = FX (x. ,i ,XI)
. 1 +8+

I Il n

the stochastic process is said to possess strict stationarity.

In other words, the joint distributioLn function is invaria.it

under time translation. In a physical sense, this means that one

-z can entar the stochastic sequence at any point and observe the

same distribunions that one observes if one enters at some other

point. If the probability distribution for a particular

parameter is unchanging with time, then tre mean for that

parameter can be consi E,-ed as a performance measure (albeit, not

necessr:-iJy ,seful) oi ,e ystema. T4.is ib because stationarity

implies that the mean for that quantity, as estimated from the

sample mean, is a constz.r. It is this pro~ersy which enables

us tzo define a parameter as a performance measure. To see this,

concider a trivial example whc-e b._".ionarii-y dioes not obtain,

- 357 -

i

Report No. 4473 Bolt Beranek and Newman Inc.

i.e., an M/M/1 queueing system where the offered traffic exceeds

the capacity of the server. In this case mean packet delay is a

useless notion. If one observes 100 packets, beginning at t = 0,

and computes the sample mean, one will almost certainly get an

estimate for the mean which is much smaller tnin it onp had

observed the system beginning at t = 1000. The expected sample

mean based upon 100 observations is therefore dependent upon

which 100 pakets one observes. Thus, the distribution function

for the mean delay is time dependent and the system is not

stationary. For stationary queueing systems, e.g., an M/M/1

system with a server utilization less than 1, the expected value

of the sample mean delay based upon 100 observations is not

dependent upon which 100 packets one observes.

Stationarity is only one important criterion. Given {X.0,

one can define the autocovariance function { s} where

Eq. 9-24 Rk = E[(Xi - 1)(Xi~k -1)]

In other words, a given Rk measures the degree to which

observations k units apart are correlated. If our observations

correspond to packet delays, then the autocovariance function

tells us the amount of informat.on that a given packet delay

yields about the expected delay for the kth subsequent packet.

- 358 -

Report No. 4473 Bolt Beranek and Newman Inc.

For most queueing networks it is reasonable to expect that

R -- > 0 as k -- > b. in other words, there is very little
k

correlation between the delays exerienced by packets which

transit the network many time units apart.

If tne {R s} converges to zero with s fast enough, then one

can show that

SEq. 9-25 nlir n * MSE (Xn) = lim n * var(n)= VEq 92 n-->oo n -- >

where

Eq. 9-26 V= R

If this property holds, {X.} is said to be ergodic in the mean

[2]. The importance of ergodicity cannot be overstated. In

order for the mean square error to converge to zero, Xn must

converge to j and the variance of Xn m6-t converge to zero.ln

It can be shown that, under very general conditions, the sample

mean chosen frc.nj the steady state is an unbiased estimator of the

true mean [2]. Thus, the mean square error will converge to zero

if the sample variance of the sample mean so converges. This

will happen if the system is ergodic in the mean. Thus, the

5- •9 -

Report No. 4473 Bolt Beranek and Newman I'Lc.

property of ergodicity is related to the ability to produce

consistent estimators inasmuch as the convergence of the mean

square error to zero is a sufficient condition for consistency.I For reasons which will be discussed below, if the variance of the

sample mean decreases as the number of observations increases,

Sthe size of the confidence intervals about the mean will also

decrease. Thus, additional observations upon ergodic systems

will produce better interval estimates for the "true" system

mean. For systems which are not ergodic, additional observations

do not necessarily yield additional information. An example of a

non-ergodic system is a simple queueing system with unit activity

level [2]. (Parenthetically, one may observe that RO var(X)

and that, for an i.i.d. stochastic process, Rk = 0 for k>O.

Thus, Theorem 9-i above becomes a special case of Eq. 9-25,

appropriate when the observations are i.i.d.)

rhe above discussion defines the circumstances under which

one can make meaningful estimates for system variables in

simulation experiments. As such, it generalizes the discussion

of section 9.1 to correlated stochastic pr-ocesses. There is

another aspect of sectior, 9.1 which has not thu. far been

addressed. In particular, having de-termined the corditions under

which one can construct point and interval estimates, one mu~t

determine how to do this. The theorems in section 9.1 which

provide formulas for interval estimates assume inaependent

- 360 -

1I

Report No. 44 7 3 Bolt Beranek and Newman Inc.

observations and infer that the sample mean X is normally

distributed about the true mean. These theorems also provide

formulas for the variance of this normal distribution. If the

sample mean is normally distributed about some value with

variance a , then one can determine a range of values within

which the sample mean will fall with a specified probability.

Thus, the condition of normality allows one to estimate

confidence intervals. For stochastic processes, to which the

theorems of section 9.1 do not apply, one is consequently left

with two questions.

1) How does one compute var(Xn)?

2) is the sample mean Xn normally distributed for some

suitably large n?

The variance of the sample mean can be estimated from the

autocovariance structure of the data. Uniortunately, this

computation is sufficiently complex so as to be virtually

4nfeasible. In addition, such a calculation would be misguided

in that one ends up with an excessive amount of information [4].

We therefore seek to develop efficient techniques to estimaLte the

variance. These will be discussed in the next uihapter when we

specify the particular algorithms which will be useJ fui Interval

estioation. For the time being, we conentrate on question d.

Wi note, once agaln. the significance of normality. if An:

3un

Report No. 14473 Bolt Beranek~ and Newman Inc.
L

has the normal distribution, then the 1-a nonfidence interval

can be computed according to

Eq. 9-27 Xn + E

whe, e

Eq. 9-28 E -;var(X)z
f

(From Equation 9-28, one can understand the practical

significance of ergodicity. If var(X n) decreases with n, then

the computed confidence intervals will become progressively

narrow as the number of observations 4nc-eases.) If Equation

9-28 is used and the Xn are not normally distributed, then

incorree, interval estimates will result. Asymptotic normality

has been demonstrated for certain analytically tractable queueing

models [2]. Unfortunately, such proofs have limited relevance

for complex queueing networks. Kleijen [3] quotes a form of the

central limit theorem which states that asymptotic normality

holds for "r-dependent strictly stationary'" stochastic proc-sses,

An r-dependent stochastic pr-ocess {X.i is defined as one for

which X. and X j+s are. ncorrelated for all j if s,.r.

A -~362

Report No. 4473 Bolt Beranek and Newman Inc.

Transient Analysis

The above discussion has ignored a cr-tral aspect of

simulation experimentation, namely, the effect that the initial

conditions of the simulation have upon the estimates of system

parameters. In fact, the notation used in the previous section

has been somewhat casual. We have assumed Lhe existence of some

sort of steady state distribution function, FX, and that the

sequence of packet delays {Xi,...,Xn} were drawn from tne steady

state distribution. In fact, reality is considerably more

complex. What one has in general is not a single distribution

function, but a conditional FX given so-,e starting condition S.,

or F Thus, given observations XI, ,"Xn, the expected value

of the conditional sample mean E(Xn 30) is given not by 1 bat

by:

Ea. 9-29 EXn Sc] = + b

The second summand is called the bias. Assume ore runs J

ind pendent replications of an experimen', with each replication

consisting of n observations. If one forms the sample mean,

Xnij for each replicat.on, nd computes X as the sample

average of the Xn,j, one has

i63-

Report No. 4473 Bolt Beranek and Newman Inc.

Eq. 9-30 MSE(X Js) var(nI + b2nnJ 0 n
L

Under certain mild conditions it can be shown that

Eq. _-,slira b = 0

Thus Xn is an unbiased estimator of p as n increases (within a

replication). In addition, one can show, for a large class of j

problems, that the consistency property also obtains [2].

The preceding paragraph has been concerned with the

convergenue of a conditional distribution to a steady state

distribution. There is another type of convergence which is also

important, namely, c.,,vergence of the distribution of Xn to the

normal distribution. The lack of certainty associated with

statements about such convergence under steady state corditions

for a given simulation run were discussed above. Here we are

concerned with the degree to which the initial conditions impact

such convergence. Once again, we assume J independent

replications of ;5he experiment each with n observations. We form

the sample mean for each replication, Xr ,,j and the mean of the

1 11eaii.-, An,J. Then, since the J replications are i.i.d., XnJ

will ba lormally distributed for J sufficiently large. The

problem is that it will be distributed with mean V and

- 364 - _

Report No. 4473 Bolt Beranek and Newman Inc.

not with mean p . That is, one has data which is normally

distributed about the wrong mean. Therefore, an experiment

consisting of many independent replications must still be

constructed so as to eliminate the bias on each individual run.

The convergence to normality across simulation runs is to be

distinguished from such convergence within a run. In dealing

with the latter type of convergence, we are concerned with the

question of whether or not the sample mean for a given

replication (as opposed to the mean of the means) is chosen from

a normal distribution. Convergence to normality within a run is

essential for interval estimation on a single simulation run and

has been demonstrated to hold for G/G/i queueing systems. For

more complex systems, it is not clear that such convergence

always obtains [2].

The problem of bias due to initial conditions appears to be

the area of simulation analysis which is the least understood and

the area where practical conclusions are scarcest. The single

general conclusion is tha'- the number of observations must be

sufficiently large so that the bias introduced is negligible-

The practical conclusion that is typically drawn and implemented

by researchers is that bias should be reduced by discarding some

number of initial observations. (Unfortunately, a number cf

authors have indicat .c that this approach can increase the mean

square error [2])

- 36g5

Report No. 14473 Bolt • . ansk 2A Newc -

One may su)mmarize the),incpal conc] ts ns of this section

as foll ows. From a sequence of '-rvations) u0:rI a

simulation model, one wishe6 to made point oi ÷tiinat-s

of various Derf'rmance measures. The wniistem p- •eries wfiC:•

allow meaningf01 estimation are 5ttionarity and erw- •it The

former ensures that it is possible , "-f -e •, , I-r

paranieters which are characteristiu of tri system over its entire

iife; the latter guarantees that additional observations on -ne

system produce more accurate results. Whiic & d.A.dcity anr

stationarity are necessary theoretic,. properties, they 6re hard

to demonstrate for complex systems. FJthermorz, they do nct

provide practical guidance in the computation of point anc

interval estimates. In order to effect sicn -•s imates, one

requires two types of convergence. Tht first is cor.ergence oi

the system to the steady state distributi•,, the second is the

convergence cf sample means to a normal distr1lution. The former

is frequently facilitated via judicious choi-e of irntial

conditior,; the latter is difficult to demonstrate. The eey

practical prerequisite for interval estimation is -. ne arIlity t?

estimate the sample variance of the sample mear. One of '-ne K---

tasks of any analy-siz- 3gorithim to a"ip0 i P 1, ± C C £I-

in an efficient manner.

366-

M-5.

Report No. 447 3 Bolt 6eranek and Newman Inc.

Reference-

1. Allen, Arnold ?robabi- ity, Statistic-, dod Queueing

Theory, Academic -e~s, 1978.

Fishman, George, Principles of Discrete Eve, Simulation.

Wiley-Interscience, 1978.

- .. Kleijner., Jack P.C., Statistical Techniques -- Simulation,

Marcel Dekker Inc., New Yc-k, 11974.

L4. Kobayash: Hisasni, ModeL _rng and Analysis, Addison-Wzslay,

1978.

Report No. 44173 Bolt Beranek and Newman Inc.

10. SIMULATION ANALYSIS PACKAGE

SThe previous chapter was largely concerned with the

theoretical issues related to the analysis of simu"laion

experiments. in this section, we describe the practical

approaches that we have implemented in our analysis package in

order to effect point and interval estimates.

10.1 Discussion of Algorithms

Given the discussion of Chapter 9, we can formulate the

outline of an analysis algorithm as follows:

1. Make m observations XI ... Xm of some performance measure

belonging to the simulation model.

2, Discard those observations, X1Xj, j<m, corresponding

to the transient period and relabel the steady state

WE observations as X 1,...Xn , n=m-j.

3. Compute the sample mean as

n

Eq. 10-1 Xn

14. Estimate var(Xn).
-

-368-

Report No. 4473 Bolt Beranek and Newman Inc.

5, Estimate a 1-a confidence interval for the mean as

Eq. 10-2 X _E

where

Eq. 10-3 E = /'var(T)
n df

From the above statement of a program, the central problems

which the analysis algorithms must solve become clear. There is

no obvious means by which to perform Task 2. Additionally, Task

4, the computation of the variance of the sample mean, is a

necessary input to Task 5, yet there is no obvious means by which

to perform the calculation. Were our observations independent,

we would rely on Theorem 9-1 which relates the variance of a set

of n independent observations to the variance of the sample mean

based upon those observations. However, for correlated data,

Theorem 9-1 is not applicable. Yet, even given var(X n), we still

Scannot complete Task 5, the computation of an interval esti-nate.

Since we use the sample variance, we must use the Student-t

distribution. It will be recalled that there are an infinite

number of Student-t distributions, indexed by degrees of freedom,

- 369-

Report No. 4473 Bolt Beranek and Newman Inc. -

Were our data independent, the number of degrees of freedom would

j be, by Theorem 9-2, n-1. But, once again, Theorem 9-2 is not

applicable to our data. Thus, the central problems to be

addressed in the analysis routines are: (1) the computation =f

the sample variance of the sample mean, (2) the computation of

the number of degrees of freedom, and (3) tne analysis of the

transient period. We defer a discussion of the transient to the

end cf thiis section and, in what follows immediatelyr, assume all

observations are drawn from the steady state distribution.

Before describing the detailed algorithms used for 7

simulation analysis, a few words are in order about those methods

which we decided not to implement. An obvious means of analyzing

simulations is to run many replications of a simulation

experiment, each with a different random number stream. Then,

the mean delay for each run does constitute an independent

observation, and the classical statistical formulas are

applicable to the set of samjle means. While this fact certainly

recommends the method of independent replications, we intend to

use this procedure only as a last resort. There are several

reasons for this decision. First, in each simulation run there

is a transient period during which the observations are biased

experiment, one typicaly discards data collected during the

transient period. Thi .3, the transient period constitutes

- 370 _

J.C *q7 Rw L 2~t

1'1I.21~ Ij

Report No. 4473 Bolt Beranek and Newman Inc.

"wasted" simulation (and therefore CPU) rime. On ten

replications of a single experiment, there will be ten such

wasted periods. If data can be obtained on a single simulation

run, then the amount of wasted simulation time is 90% less. This

increase in the ratio of productive simulation time to CPU time

is the strongest argument for a method that requires a single

simulation run. However, it is not the only such argument.

There is a certain overhead incurred in each simulation run apart

from that associated with the transient. This overhead is

measured both in CPU time and in analyst's time. Additionally,

reliance on many short simulation runs introduces the risk that

long-term processes present in the simulation will be obscured.

Finally, at least one author suggests that asymptotic normality

is a better assumption for a single long simulation run than for

many shorter runs [4].

A second method for producing point and interval estimates

which was not implemented is widely discussed in the literature.

This is the so-called regenerative approach [3]. A regeneration

point of a simulation is defined as a particular state such that

whenever the system is in that state, all future observations on

the simulation are independent of its prior history. The

intervals between regeneration points are called epochs and have

the nice feature that observations made in different epochs are

independent and ide-tically distributed. A simple example of a

- 371 -

Report No. 4473 Bolt Beranek and Newman Inc.

regeneration process is an M/M/1 queueing system for which one

can define the point at which a customer arrives at the empty and

idle state as a regeneration point.

Regeneration processes possess a number of properties which

greatly facilitate oata analysis. However, not all systems

possess the regenerative property. Furthermore, for complex

systems, the expected simulation time between regeneration points

may be too large to permit sufficient observations within a

reasonable amount of elapsed time. Thus, in a simulated network

with dozens of queues and servers the probability associated with

any particular state, where a state is defined as a specific

assignment of customers to queues, may be so negligible that the

expected size of an epoch is excessively large.

There is a certain advantageous feature that both the

regenerative and independent replication methods have which the

algorithms that we have imrlemented do not possess. These

methods are exact in the sense that the observations made on a

given replication or in a particular epoch are truly independent.

Each of" the methods which we have implemented involves some

approximation and is not necessarily applicable to all types of

data. Thus, in all cases, prior analysis of the structure of the

data is required •o. determine tie applicable method.

372 -

-If

Report No. 4473 Bolt Beranek and Newman Inc.

10.1.1 Batch Means

The first method that we have implemented is known as the

batch means method. The approach is conceptually similar to the

regenerative approach and is, in its mathematical details,

related to the independent replications me.hod. Batch means has

an advantage over the latter in that only one transient period is

incurred. Its disadvantage is that, unlike the independent

replications method or the regenerative approach, the assumption

of independent observations is an approximation.

The basic idea behind batch means is that the further apart

in time two observations on the simulation are made, the more

"independent" they become. This is a simple statement of the

obvious fact that packets transiting a network at not greatly

different simulated times are more likely to encounter similar

*network conditions than are two packets transiting at greatly

diiferent times. (Note that this is not necessarily the case if

there are long-term periodic processes occurring in the

simulation.) Hence if one divides one's observations on the

simulation into large groups, or batches, such that if i<j than

any packets in batch i left the network before all packets in

batch j, one can treat observations on different oatches as being

independent and identically distributed. Thus, one can compVte

the mean of the observations in each batch, treat each batch

average as an independent observation and apply the classical

statistical formulas to the set of batch means.

-373-

Report No. 4473 Bolt Beranek and Newman Inc.

This approach can be represented mathematically as follows.

For a set of observations, {XI,...X n, and a batch size, m,

compite the batch averages as:

Eq. 10-4 Yi = m x m(11)+j

where k is the greatest integer in n/m. Since each batch average

is an "independent" observation, we can apply Theorem 9-1 as

follows. If we compute the sample variance of the batch means:

k2 _1 k /Y 7)2
Eq. 10-5 Sy = _ (YYi-

then we can represent (by Theorem 9-1)

Eq. 10-6 var(X) = S2 /k

Finally, we can compute a 1-(x interval estimate as

Eq. 10-7 Xn + t /2;k-1 SY

The central computational difficulty with the batch means

method is the choice of the appropriate batch size, m. There is

- 374 -

Report No. 4473 Bolt Beranek and Newman Inc.

an important traderf:? involved in the selection of a batch size.

If the batch size is too small, then the approximation that the

batch means are independent is inevitably a poor one. As the

batch size grows, then the number of independent observations

I. becomes smaller. This may be reflected in a larger estimate for

1. var(Xn).

We have implemented an iterative approach which is designed

to select a small batch size which, nevertheless, ensures

. •independent observations [3]. Namely, we begin with a batch size

of 1 observation per batch. Each iteration of the algorithm

1 results in a doubled batch size. For each iteration, we compute

the batch means and test for independence of the batch means at

Sthe a level. The algorithm proceeds until the test for

S•"independence is successful or until there are fewer than 8

batches. If the kesc for independence succeeds and there are

J more than eight Latches, we can compute point and interval

estimates according to Equations 10-4 through 10-7 above. If

there are fewer than eight batches, we cannot compute such

estimates and must instead run the simulation for a longer amount

of time.

The choice of eight as the minimum number of batches is

dictated by the particular test for independence that we have

implemented. This test examines the hypothesis, H0 , that the

observations in the sequence {Yil are independent. The test

statistic used is:

375

Report No. 4473 Bolt Beranek and Newman Inc.

k-i
x-1 (Y - Y j+)2

Eq. 10-8 Ck = 1- J

2 2 (Y - Y2
J=l

If the {Yi} have a monotonically decreasinn aut,'..ovariance

function we accept H0 at the ý significa,'ce level i.

Eq. 10-9 Ck < c(2'3) kjk-25(k 2_1)

where c(2 a) is defined according to

c(a)
Eq. 10-10 1 fe-X 2 2dx = 2- c/2

If the autocovariance function is not monotonically decreasing

then we accept H0 if

Eq. 10-11 Ck < c(aY1 (k-2j(k2_1)

- 376 -

Report Nc. 4473 Bolt Beranek and Newman Inc.

The batch means algorithm has been implemented as a SIMULA

class (see section 10-3). A sample output is displayed in Fig.

10-1. Each line contains the results of an iteration of the

algorithm. The column labelled "c" contains the value of the

test statistic Ck. The columa labeled "critical value" contains

the value to which we are comparing Ck (right hand side Eq.

10-9). When c is less than che critical value, we accept the

hypothesis that the batches defined on that iteration are

independent. Thus, in Figure 10-1, 64 was the mininmum batch size

which allowed the assumption that the batch meais were

statistically independent. In this case, there were 125 batches,

the sample variance of the sample mean was .019, and the .95

interval estimate for the mean was [1.89, 2.43].

In order to test our implementation Of the batch means

method, we built an M/M/l queueing simulator. One hundred

replications of the simulator were run, each with a different and

independent random number stream. (On each replication the seed

for the random generator was chosen to be the last random number

generated in the previous replication.) For each simulation

replication, the server utilization was .75 (average arrival rate

of 3. per ý;(cond, .75 second average service time).

'Ke

ii J
I

Report No. 4473 Bolt Beranek and Newman Inc.

0.95 interval estimation ---- batch method

sample meant 2.16266

no. of no. of obs. sample variance 0.95 interval estimate critical
batches per batch of sample mean lower upper c value

8000 1 0.000811 2.106804 2.218510 0.929 0.018

4000 2 0.001565 2.085072 2.240242 0,898 0.026

2000 4 0.002974 2.155680 2.269633 0.825 0.03?

1000 8 0.005437 2.017936 2.307378 0.692 0.052

500 16 0.009143 1.974748 2.350566 0.507 0.073

250 32 0.013710 1.931997 2.393317 0.275 0.104

125 64 0.018601 1.892654 2.432660 0.055 0.146

62 128 0.020823 1.87U040 2.451274 0.053 0.206

31 256 0.025882 1.834025 2.491289 *'m' 0.286

15 512 0.028223 1.802246 2.523068 ,Uii 0.396

125 hatches suffice for independence at 0.05 level

Figure 10-1 Sample Output -- Batch Means MetAod

-378

Report No. 4473 Bolt Beranek and Newman Inc.

Our estimate of the transient period for the simulation was

based on analytic results. According to a diffusion model of

GIG/I systems due to Kobayashi [5], the transient period of such

systems is equal to

S[s](C1+ C2 p)

Eq: 10-12 To 5
S~ (1-p) 2

where C2 and Ca2 are the squared ccefficients of variation of3 a

the service and interarrival times, respectively. For an M/M/1

system with a utilization of .75 and a service time of .75

seconds, the transient period is therefore computed as roughly

100 seconds. In order to be safe, for each replication of the

M/M/1 simulator, we discarded statistics on the first 1000

-rrivals into the system.

For each replication of the system we accumulated the

queueing delays experienced by 8000 packets and ran the batch

means algorithm over these results. The decision Lo accumulate

data for a specified number of customers as opposed to a

specified amount of time was not an arbitrary one. If one

accumulates data for a specified amount of simulated time, then

the number of data points accumulated is a random variable. The

- 379 -

Report No. 4473 Bolt Beranek and Newman Inc.

estimate of average queueing delay, i.e., the ratio of total

delay experienced by all customers to the number of customers,

computed as the ratio of two random variables, is, according to

statistical theory, a biased estimate of the mean delay. Rather

than apply the theory applicable to ratio estimation, we instead

fixed the number of observations collected (as opposed to the

time during which the observations were collected). This means

that the denominator in the computation of mean delay is not a

random variable.

The results of the analysis for the first 10 replications

are summarized in Figure 10-2. Figure 10-2 shows, for each of

the 10 replications, the analysis results for the first iteration

on which we accepted the hypothesis, at the .05 level, of

independent batch means. It will be observed that, for the first

replication, 8000 observations were not sufficient to produce an

interval estimate. That is, on that replication, the test for

independence of the batch means was not successful for any

iteration in which there were eight or more batches.

According to elementary queueing theory, the expected

queueing delay for an M/M/I system with a server utilization of

.75 is 2.25. Since we computed .95 interval estimates, we

expect that 2.25 should be within the computed interval on 95% of

the replications for which we are able to make an estimate.

(Reference to Figure 10-2 reveals that on replication 7 the

- 380

IReport No. 4473 Bolt Beranek and Newman Inc.

replication batch size X var(Xn) .95 interval estimate
n

1 --- 3.56

2 128 2.20 .039 [1.81 , 2.60 1

3 128 2.33 .028 [2.00 , 2.66 1

4 64 2.09 .022 [1.80 , 2.38 1

5 128 2.34 .056 [1.87 , 2.81 1

6 64 2.16 .019 [1.89 , 2.43 1

7 128 2.99 .102 [2.35 , 3.63 1

8 128 2.43 .058 [1.95 , 2.91 1

{ 9 64 2.09 .019 [1.82 , 2.36 1

10 256 2.25 .044 E 1.82 , 2.68 1

I.

I"

; Figure 10-2 Summary of Batch Means Analysis for First
10 Replications of an M/M/1 Simulation

& -381-

Report No. 4473 Bolt Beranek and Newman Inc.

interval estimate lid not contain the system mean.) We were able

to make interval estimates on 97 of the 100 replications. On 93

of these 97 replications, our computed .95 interval estimate for

the mean contained the theoretical mean delay of 2.25. Our

"coverage rate" was therefore 93/97 or 96%, which is very close

to the expected coverage rate of 95%.

As an empirical method of checking the choice of batch size

we introduce the normalized autocovariance function or

"correlogram." it will be recalled that the autocorariance

function of a time series IXi} is given by:

Eq. 10-13 Rk = E[(Xi - P)(Xi+k - 3)]

and that Rk measures the covariance of observations which are k

observations apart. If one normalizes Rk by dividirng by RO, one

obtains the autocorrelation sequence

Eq. 10-14 R k

k R_ 0

A given pk is called the serial correlation coefficient of lag

k. Clearly P0 is equal to unity, which is merely the statement

that an observation is always perfectly correlated with

-382-

Report No. 4473 Bolt Beranek and Newman Inc.

Sitself. can assume any value between -1 and 1. Values
k

of P near zero indicate very little correlation.• k

For the time series of steady-state queueing delays produced

by an M/M/1 system, one expects that the correlation between

observations closely spaced in time will be high (near one) and

that between observations distant in time will be low (neai

zero). This should result in a series of p which are
k

monotonically decreasing from 1 to zero with k. In order to see

this, we introduce the sample autocorrelation sequence or

correlogram computed by

Sn-Ki=~~~1 Xn(i-r(!k

Sn
Eq. 10-15 Pk n

n (X - ~n 2

The correlogram i: an asymptotical~y unbiased estimator

of k [5.

One can use the correlogram to estimate the batch size in

t. the following manner. If the serial correlation coefficients are

r !monotonically decreasing with the lag, then, for some lag i and

for all higher lags, the value of p will be close to zero.

This means that the jth observation and the (j+i)th observation

-383-

Report No. 4473 Bolt Beranek and Newman Inc.

are approximately statistically independent for all j. Thus, one

0 would expect that i should roughly approximate the batch size.

If one uses (as we do) somne other method to choose a batch

size, one can use the correlogram to verify that the computed

batch means are independent. If the correlogram of independent

data is computed, then the correlation coefficients for all lags

(with the exception of lag 1) should be near zero. In addition,

there should be no discerniblc bias in the sequence of

correlation coefficients toward either positive or negative

values. In other words, the coefficients should be distribluted

more or less randomly about and close to zero.

The correlogram lends itself nicely to graphical analysis.

Figure 10-3 shows the correlogram, computed out to lag 128, of

queueing delays for a sample run of an M/M/1 simulation. As can

be seen, the serial correlation coefficients are roughly zero for

lags greater than 120. It will be observed from Figure 10-2 that

the batch means method generally selected a batch size of 128.

The results produced by the correlogram and the batch means

independence test are therefore consistent.

Unfortunately, the batch means method is not appropriate for

all varieties of data. An important and interesting example is

provided by measurements of delays for packets traversing an

actual IMP. In order to produce such data, we generated messages

- 384 -

Report No. 4473 Bolt Beranek and Newman Inc.

8 16 24 32 40 48 56 64

LAG

72 80 88 96 104 112 120 128

LAG

Figure 10-3 Correlogram -- 8000 Observations of M/M/i Queueing Delays

-385-

Report No. 4473 Bolt Beranek and Newman inc.

in a deterministic manner using a test host and accumulated the

time 3pent by every tenth packet on the modei. queue in a

particul9r i,!MP. ;Under light locd, the sequence of packet delays

produced the time series displayed in Figure 10-4. The

correlogram associated with this time series, shown in Figure

10-5, clearly has a damped harmonic structure to it. This is

exactly what one would expect the correlogram of a periodic

deterministic process to look like.

We ran our batch means analysis routines over this data.

The output of this analysis is shown in Figure 10-6. As can be

seen in Figure 10-5, the serial correlation coefficients are

significantly different from zero for lags extending out to at

least 30. This means that observations spaced as much as 30

observations apart have a significant degree of correlation.

Yet, the batch means method decided that a batch size of only 16

was sufficient to produce statistically independent batch means.

The clearly erroneous choice of batch size for the IMP data

points to two weaknesses in the batch means method. The first

weakness is not necessarily fatal. The test statistic used to

Sdetermine serial independence of the batch means, which was given

in Equation 10-8, may be rewritten as

- 386 -

Report No. 4473
Bolt Beranek and Newman Inc.

154~

120
i

15

F -

I; V

SFigure 10-11 Time Spento Modem Queue -- est Host Data

S187

Report No. 4473 Bolt Beranek and Newman Inc.

1'

Pk

2 *32 *40 **48 **56 64

- LAG

I|

Figure 1' - -- ' oAutng Time fn- Tist Host Data

38a -

f

Report No. L1473 Bolt Beranek and Newman Inc.

0.95 interval estimation ---- batch method

sample mean= 49.45718

nn. of no. of obs. sample variance 0.95 interval estimate critical
batches per batch of sample mean lower upper c value

4458. 1 0.227964 48.520921 50.393434 0.324 0.029

2229 2 0.283732 48.412377 50.501978 0.057 0.042

1114 4 0.258024 48.460289 50.454066 0.713 0.059

557 8 0.0738C 48.923440 49.990915 0.132 0.083

278 16 0.079905 P8.900592 50.013763 0.015 0.117

139 32 0.066618 48.946712 49.967644 0.126 0.165

69 64 0.061782 48.961074 49.953281 0.051 0.233S34 128 0.059643 48.960195 49.954161 0.217 0.326

17 256 0.061207 48.932583 49.981772 0.212 0.447

8 512 0.054229 48.906378 50.007977 0.389 0.605

278 batches suffice for independence at 0.05 level

Figure 10-6 Batch Means Output -- Modem Queue Waiting Times

-389 -

Report No. 4473 Bolt Beranek and Newman Inc.

(Y i -Y), + (Y k -)2

Eq. 10-16 C k + +2(k - 1)R
0

where, once again, there are k batch means. For large k, the

test statistic therefore approximately equals the first order

serial correlation coefficient. Thus, the test for independence

roughly assumes that if adjacent batch means are uncorrelated,

all batch means are independent. Unfortunately, for harmonic

autocovariance functions it .:.s possible to have p approximately
1

zero and p not equal to zero for k>1 [3]. If the correlogram
k

has this sort of structure, then the test for independen-ce which

is based upon p will invariably be wrong. This particular
1

problem may be corrected by resorting to a different test for

independence or a different approach to the selection of a batch

size. We have therefore implemented 4 tests for serial

independence as part of our statistics package and we are

examining other algorithms for the selection of a batch size.

There is a second problem with the batch mcans method which

is more profound than a problematic test for independence. The

underlying assumption in the batch means approach is that, for a

large enough batch size, the batch means can be considered to be

independent and identically distributed. If there are long-term

periodic processes present in the simulation, the batch means

algorithm may either fail to detect such processes or fail to

select a batch size. In the first case, erroneous results will

- 390 -

Report No. 11473 Bolt Berar ek and Newman Inc.

be produced; in the second case there will be c-o resk'lts. For

large classes of experiments, the method would therefore appear

to be inappropriate. When we have more data from si~r.ilated

networks, we will be better able to assess the general

applicability of the various batch means algorithms to queueinsz

"systems more complex than our M/M/1 model.

10.1.2 Autoregressive Models

In addition to the batch means algorithm, we have

iiimplemented a more poweri'ul method for the analysis of simulation

data (3]. This approach is borrowed from the techniques of

linear prediction used in the ana~ysis of discrete signals and

involves the construction of a model for the output of the

stochastic process being analyzed.

Consider the time series {Xi} formed by observations on

L packet delays recorded in the simulation's steaiy state. We

study the properties belonging to this time serips by

L constructing a model for it in which the jth packet delay X1 , is

represented as a linear combination of the previous p packet

delays. That is, we assume that we can find a set of
I,

coefficierts, bi, such that we can approximate

"Ii p

Eq. 10-17 X 9 b-X,

-391 -

Report No. 4473 Bolt Beranek and Newman Inc.

In the literature on time series this sort of model is called on

"all-pole" model. In the statistical literature, it is called an

"autoregressive representation" of {Xi} [6]. The value of p

is called the order of' the autoregressive representation.

As it turns out. th-ere are extremely efficient methods for

determining the values {b. :i=1,p} for any given choice of an

autoregressive order p. We have implemented an approach due to

Durbin [6]. If we represent the set of {bi) for the pth order

representation ,s bp,i, then we compute bp,j, aa estirmate for

bp,j recursively according to the following formulas:

pI
(a) E = R

+0
i-1

(b) P.

(c) ^ p

Eq. 10-18

(d) b = b .+ K ÷ L p-li-j 1_< i < i -

(e) RE (1- 2)E -

- 392 -

Report No. 4473 Bolt Beranek and Newman Inc.

A

In the above formulas Ri is the sample autocovariance function.

Us i4n DurbinIs alori thm we aan produce many

representations for the same data, each of a different order p.

We therefore require a means to decide upon a specific value for

p. In order to do this a statistical test is used. We form

Eq. 10-19 T = b4 R b
s=0 -=1,S S 10

Then

Eq. 10-20 Tq~j = n -

converges to the chi-square distribution with q-j degrees of

freedom for q sufficiently large [3]. Thus, we arbitrarily

choose q to be some large integer (say 50). Starting with j=O,

we compute, for successively higher values of j, the value of the

test statistic Tq-j and compare it with the 1-a percentile

value of the chi-square distribution with q-j degrees of freedom.

Here a is the size of the chi-square test (typically, .10).

The first value of j for which the test statistic Tq.j is less

than the computed critical value is chosen as the order of the

representation.

- 393 -

Report No. 4473 Bolt Beranek and Newman Inc.

Once one knows p and {bp~i one has completed the

autoregressive model. It, rtiains to compute an estimate for

var(Xn) and the number of degrees of freedom to be used in

computing confidence intervals from the t statistic. Given:

Eq. 10-21 p s= SP s=Opss

and

p

Eq. 10-22 b b P
s=0 p

then the number of degrees of freedom is given by [3]

nb

Eq. 10-23 f p
2 (p-2s)

s=O

rhus, the 1- c confidence interval is given by

Eq. 10-24 n n var(Xn) t

The autoregressive technique is extremely powerful since one

is, in fact, contructing an analytic model for one's data.

- 394 -

;ii
kReport No. 4473 Bolt Beranek and Newman Inc.

Having developed such a model, quite a bit more information is

accessible than simple interval estimates for the mean delay. In

particular, one can efficiently estimate the serial correlation

coefficients, estimate the transient period of the simulation and

produce the spectrum of the stochastic process. The spectrum

contains much information about whatever periodic phenomena are

present in the simulation.

For a representation of order p, if one computes the serial
A

correlation coefficients pk for k<p one can estimate Pk for k>p

recursively by [3]

P

Eq. 10-25 bk =- P .S

The use of this formula allows an ýiormous savings in CPU time

over the computation using Equation 10-15.

In order to analyze the transient period, we define the

conditional nmean for the jth observation as

Eq. 10-26 j = E(Xj XI 1 ,' *''Xjp,''',Xl)

Of course, V P I as j increases. That is, the expected value
j

of the sample mean based upon j observations converges to the

steady state mean with j. The expression

-395 -

Report No. 4473 Bolt Beranek and Newman Inc.

Eq. 10-27 -P

c herefcre measures the relative influence on Xi, the jth

observation, of ;he initial conditions. The closer Ii is to

zero, the closer the system is to the steady state. One can

easily express the value of the conditional mean Uj in tert.,s of

the autoregressive coefficients by [3]

P
Eq. 10-28 1J = - b (ij- -ii)

The computation of the transient period then follows

directly. We assume that XI = X2 = ... Xp = 0. That is we assume

that the simulation is initially in the empty state. Then,
U p+1 b. We substitute Spis for bp and 3n for p in

pU p+1= n

Equation 10-28 and compute V j recursively until the value of

I. is sufficiently small. The value of j for which this is so3

is the size (in nuHIDer of observations) of the transient period.

Finally, cyclic phenomena in the simulation can be directly

investigated using the spect,-um of the stochastic sequence of

observations. The spectrum is the fourier transform of the

autocovariance function R
s

S~- 396 -

Report No. 4473 Bolc Beranek and Newman Inc.

Eq. 10-29 g(X)- 1 -i(se e I R e--g(xX) = g(-x)

and

Eq. 10-30 Rs j g(X)eixs dX

-i7T

Since

Eq. 10-31 R = g(X)dX

one can think of the variance of the stochastic process as being

caused by a continuum of random variables indexed byX . The

spectrum can be represented as [3]

Eq. 10-32 g(X) = a<

27r I b b cosA.(r-s)

r,s=0 p,r p,s

The autoregressive analysis routines were applied to the IMP

data for which the batch means method performed so poorly. The

results are shown in Figure 10-7. As can b'e seen, a complete

A -analysis is carried out for all autoregressive orders up to and

-397 -

Report N:. 4473 Bolt Beranek and Newman inc.

including 50. For each iteration, the sample variance of the

sample mean and interval estimates are computed. The column

labelled T contains the value of the test statistic (T .). Thisq-j

is compared with the 90th percentile value of the chi-square

distribution which is contained in the column labeled "critical

value." The order, p, of the autoregressive representation is

chosen as the lowest order for which T is less than the critical

value. For the analysis shown in Figure 10-7, the order equals

39. The output from the analysis routines displays the sample

autoregressive coefficients bp,j for the chosen autoregressive

order.

Below the sample coefficients, additional information is

displayed. First, the least values of j for which the absolute

value of $ is less than .05 and .01 are displayed. Next, the

least values of j for which I.(see Eq. 10-27) is less than .01

and .05 are given. These latter values are estimates for the

t.ransient period.

Figure 10-8 displays the correlogram. For j>39 the values

for 0 are estimatea using Equation 10-25. A comparison between
J

these , which are based purely upon the autoregressive model
j

for the stochastic process, with the $ computed directly fromJ
the time series (and shown in Figure 10-5) shows that the

representation is fairly good.

-398-

Report No. 4473 Bolt Beranek and Newman Inc.

0.115 interval estimation--autoregressive approach

sample mean 49.45718

sample variance 0.95 interval estimate degrees of critical
order of sample mean lower upper freedom t value

0 0.22791 48.52103 50.39333 4457 2554.311 63.169
1 0.44630 48.14613 50.76822 1138 2331.166 62.040
2 0.27916 48.42036 50.49400 1205 2211.942 60.9093 0.17176 48.64393 50.27042 1271 2076.876 59.776
4 0.09595 48.84941 50.06494 1449 1869.295 58.643
5 0.05298 49.00558 49.90877 1590 1634.274 57.507
6 0.03370 49.09700 49.81736 1459 1487.243 56.371
7 0.03332 49.09885 49.81551 892 1487.147 55.232

0.10050 48.83212 50.08224 211 486.158 54.092
9 0.05720 48.98665 49.92771 339 162.268 52.950

10 0.05817 48.98238 49.93197 289 161.964 51.807
11 0.06298 48.96266 49.95170 237 155.165 50.662
12 0.06232 48.96504 49.94931 216 155.043 49.514
13 0.05724 48.98551 49.92885 214 147.264 48.365
14 0.05060 49.01375 49.90060 221 130.894 47.214
15 0.05479 48.99529 49.91907 Wb. 124.051 46.061
16 0.06517 48.95248 49.96188 144 91.359 44.905
17 0.05457 48.99579 49.91857 162 56.830 43.747
18 0.05390 48.99O1I 49.91595 153 56.664 42.586
iq 0.05448 48.99y55 49.91871 141 56.538 41.423

"0.05676 48.98564 49.92871 128 54.685 40.258
2. 0.05528 48.99171 49.92264 124 53.913 39.089
22 0.05426 48.99586 49.91849 120 53.531 37.918
23 0.05039 49.01273 49.90162 122 47.487 36.743
24 0.05192 49.00564 49.90871 113 46.500 35.565
25 0.04821 49.02218 49.89218 115 40.442 34.383
26 0.04762 49.02466 49.88970 111 40.277 33.!98
27 0.04576 49.03317 49.88118 110 38.513 32.008
28 0.04476 49.03769 49.87666 107 37.976 30.815
29 0.04387 49.04176 49.87259 104 37.530 29.617
30 0.04258 49.04783 49.86652 103 36.547 28.413

Figure 10-7 Output of Autoregressive Analysis --

Modem Queue Waiting Times

-399-

Report No. 4473 Bolt Beranek and Newman Inc.

sample variance 0.95 interval 'stimatc degrees of critical
order of sample mean lower upper freedom t value

31 0.04357 49.04273 49.87162 96 35.958 27.205
32 0.04675 49.02723 49.88713 86 30.473 25.991
33 0.04482 49.03626 49.87810 86 28.491 24.770
34 0.04393 49.04032 49.87404 85 28.052 23.543
35 0.04468 49.03646 49.87789 80 27.739 22.308
36 0.04736 49.02336 49.89100 73 23.970 21.065
37 0.04593 49.02994 49.884142 73 22.930 i9.813
38 0.04706 49.02431 49.89004 69 22,281 18.551
39 0.04313 49.04318 49.87117 73 13.850 17.276
40 0.04121 49.05259 49.86177 74 11.550 15.98841 0.04198 49.04846 49.86590 70 11.168 14.685
42 0.04102 49.05309 49.86126 70 10.575 13.363
43 0.03865 49.06514 49.84922 72 6.637 12.018
[44 0.03950 49.06052 49.85384 68 6.120 10.646
145 0.03971 49.05917 49.85519 66 6.086 9.237
46 0.04168 49.04882 49.86553 61 3.491 7.781
47 0.04003 49.05709 49.85726 62 1.675 6.253
48 0.03923 49.06103 49.85333 61 1.227 4.609
49 0.04028 49.05534 49.85901 58 0.458 2 734
50 0.04110 49.05084 49.86351 55 0.000 0.000

autoregressive order 39

sample autoregressive coefficients

1.00000 -0.27656 0.15257 0.15591
q.17342 0.15037 0.07032 0.10709

-0.45784 0.22803 0.01251 -0.03771
0.00969 0.01527 0.07496 -0.02557

-0.08234 0.06957 0.01437 0.00299
-0.00880 0.02258 -0.00059 0.04934

0.00149 0.03610 -0.00232 0.01432
0.02058 -0.00916 0.03153 -0.02309

-0.03962 0.01640 0.01469 0.00760
-0.02835 0.02526 -0.02412 0.04356

minimal j: 18 for abs(autocorrelation(j)) <= .05

minimal j: 42 for abs(autocorrelation(j)) <= .01

minimal J= 101 for abs((conditional mean(j)-mean)/mean) <= .01

minimal j: 80 for abs((conditional mean(j)-mean)/mean) <: .05

Figure 10-7 (cont.) Output of Autoregressive Analysis --
Modem Queue Waiting Times

0- j00 -

Report No. 4 447 3 Bolt Beranek and Newman Inc.

I 4

Ok* * *

I ft

I, LAG

Il
I!

I!

I|

Figure I0-8 Correlogram for Modem Queueing Delays

i ~-1401 -

e poor, No 41473 Bolt Beranek end Hew•an Inc.

Finally, the analy~sts routines also computed and graphed the

spectrum of the :neries of IMP modem queue waiting times. This is

shown in Figure 10-9+ The x-axis is in units of ir/64 • The

major peak in the spec*rum occurs at 0-16/6o4 This corresponds

to a period of 2'7/(16i7/64) or 8. Examination of the actual time

series of delays, shown in Figure 10-4, shows that the period of

the series of IMP delays is indeed 8.

As a final check on the autoregressive method, we applied it

once again to 100 independent r.-plications of an M/M/1 queueing

system with a .75 activity level. A sample output for a single

replication is shown in Figure 10-10. It will be observed that

the autoregressive order was chosen as 10 and that the computed

confidence interval for the 10th order scheme does indeed include

the theoretical mean queueing delay of 2.25. It will also be

observed that the estimated transient period is, in this case,

533, somewhat higher than the transient of 100 which was

estimated from the diffusion model but, nevertheless, safely less

than the 1000 observations which were discarded during the actual

data collection.

A summary of the results for the first 10 replications of

the M/M/1 simalator is contained in Figure 10-11. Comparison of

the interval estimates for these replications as computed by the

autoregressive method and the batch means method (Fig. 10-2)

shcws very good agreement.

1 -402-

S~/

Report No. 4473 Bolt Beranek and Newman Inc.

g(x)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 6

Figure 10-9 Spectrum for Seqjence of Modem Queueing Delays

-403 -

Report No. 4473 Bolt Beranek and Newman Inc.

0.95 interval estimation--autoregressive approach

sample mean = 3.55527

sample variance 0.95 interval estimate degrees of critical
order of sample mean]ower upper freedow t value

0 0.00444 3.42456 3.68598 7999 7782.090 63.169
1 0.63480 1.92284 5.18769 28 109.106 62.040
2 0.71407 1.81350 5.29704 25 81.757 60.909
3 0.76936 1.73949 5.37105 23 70.743 9.776
4 0.77918 1.72604 5.38450 22 70.424 58.643
5 0.82497 1.66610 5.44444 21 63.957 57.507
6 0.86437 1.61523 5.49530 20 59.639 56.371
7 0.88139 1.59309 5.51744 19 58.884 55.232
8 0.89061 1.58086 5.52968 19 58.669 54.092
9 0.92303 1.53965 5.57088 18 56.130 52.950

10 0.99343 1.45226 5.65828 17 45.397 51.807
11 1.01377 1.42683 5.68371 17 44.580 50.662
12 1.03662 1.39846 5.71207 16 43.592 49.514
13 1.03424 1.40064 5.70990 16 43.581 48.365
14 1.08960 1.33340 5.77713 15 38.172 47.214
15 1.15890 1.25053 5.86001 14 30.602 46.061
16 1.21264 1.18682 5.92372 14 26.507 44.905
17 1.21503 1.18326 5.92728 14 26.499 43.747
18 1.28465 1.10173 6.00880 13 20.308 42.586
19 1.28732 1.09784 6.01270 13 20.300 41.423
20 1.30747 1.07381 6.03673 12 19.819 40.258
21 1.33037 1.04666 6.06388 12 19.217 39.089
22 1.36666 1.00423 6.10631 12 17.771 37.918
23 1.41068 0.95317 6.15736 11 15.766 36.743
24 1.43365 0.92618 6.18436 11 15.245 35.565
25 1.47696 0.87621 6.23433 11 13.478 34.383
26 1.47355 0.87916 6.23137 1V 13.467 33.198
27 1.51203 0.83474 6.27580 11 12.140 32.008
28 1.49438 0.85378 6.25676 11 11.865 30.815
29 1.53453 0.80746 6.30307 10 10.462 29.617
30 1.53601 0.80486 6.30567 10 10.460 28.413

Figure 10-10 Output of Autoregressive Analysis
M/M/I Queueing Simulation

- 404 -

Report No. 4473 Bolt Beranek an-' Newman Incý

sample variance 0.95 interval estimate degrees of critical
order of sauple mean lower upper freedom t value

31 1.59434 0.73815 6.37238 10 7.685 27.205
32 1.61124 0.71818 6.39236 10 7.463 25.991
33 1.59305 0.73770 6.37283 10 7.206 24.770
34 1.59391 0.73578 6.37475 10 7.205 23.543
35 1.58129 0.74907 6.36146 10 7.079 22.308
36 1.57045 0.76040 6,35013 10 6.984 21.065
37 1.59904 0.72707 6.38346 10 6.333 19.813
38 1.61185 0.71163 6.39891 10 5.206 18.551
39 1.57716 0.74997 6.36057 10 5.261 17.276
40 1.57765 0.74846 6.36207 10 5,261 15.988
41 1.58830 0.73540 6.37513 10 5.170 14.685
142 1.60670 0.71354 6.39700 10 4.905 13.363
43 1.63474 0.68072 6.42981 9 4.307 12.018
44 1.68487 0.62289 6.48765 9 2.483 10.646
45 1.63973 0.67312 6.43742 9 1. 18 9.237
45 1.63785 0.67427 6.43627 9 1.005 7.781
47 1.65788 0.65050 6.U6004 9 0.710 6.253
43 1.65611 0.65152 6.45902 9 0.707 4.609
49 1.64060 0.66820 6.44234 9 0.530 2.734
50 1.61410 0.69749 6.41305 9 0.000 0.000

autoregressive order 10

sample autoregressive coefficients

1.00000 -0.92384 -0.02378 -0.02974
0.02142 -0.00669 -0.01441 -0.00342
0.01218 0.01608 -0.03673

minimal J= 339 for abs(autocorrelation(j•) (= .05

minimal j= 1154 for abs(autocorrelation(j)) <= .01

minimal J= 533 for abs((conditional mean(j)-mean)/mean) <= .01

minimal j: 350 for abs((conditional mean(j)-mean)/mean) <= .05

Fig 10-10 (cont.) Output of Autoregressive Analysis
M/M/1 Queueing Simulation

- 415 -

Report No. 4473 Bolt Bercrek and Newman Inc.

replication order var(Xc) .95 interval estimate

1 10 3.56 .99t [1.45 , 5.66 1

2 2 2.20 .038 [1.81 , 2.59]

3 11 2.33 .029 [1.99 , 2.67]

4 2 2.08 .025 [1.78 , 2.40]

5 36 2.34 .086 [1.74 , 2.94]

6 1 2.16 .022 [1.87 , 2.46]

7 4 2.99 .016 2.18 , 3.80]

8 2 2.43 .051 [.O9 , 2.88]

9 3 2.09 .021 [IlK: , 2.37]

10 1 2.25 .037 ." , 2.63]

Figure 10-11 Summary of Autoregressive Analysis--
Ten Replications of M/M/1 Simulation

- 406 -

Report No. 4473 Bolt Beranek and Newman Inc.

We once again determine the coverage rate yielded by the

autoregressive analysis on all 100 replications. On 2 of the 100

replications, no autoregressive order less than 50 satisfied the

chi-square test. Of the 98 replications for which we were able

to make interval estimates, the theoretical delay of 2.25 was not

within the computed interval on 5 replications. This represents

a coverage rate of 93/98 or . 9 4 9 , which is remarkably close to

the expected value of .95.

The autoregressive approach therefore appears to give very

good results for an M/M/1 simulation. There is little doubt,

however, that autoregressive models are not suitable for all

types of data. We intend to investigate the suitability of this

Aapproach for data from network simulations. We also intend to

determine whether better results will be provided by a model

which is more complex than that described by Equation 10-17.

10.1.3 Transient Analysis

As was discussed in the previous chapter, there is a period

in any simulation run in which the probability distributions

which describe the system are biased toward the initial

conditions. For examDle, if an M/M/I simulation experiment is

begun and if the simulated server is initially idle and the queue

empty, then, for some period of simulated time, there will be a

t greater probability for the simulated system to be in the idle

state than was predicted by the steady state distributions.

-407-

Report No. 44 7 3 Bolt Beranek and Newman Inc.

This point is subtle in that the empty and idle state is

simply a system state to which an M/M/1 simulator will return

with finite probability during its lifetime. In fact, iJt is the

most probable state. This being the case, the source of the

error introduced by starting a simuletion in a state to which the

simulation will invariably return is somewhat obscure.

The problem lies in the fact that the steady state

probability associated with the empty and idle state for an M/M/I

simulator is given by

Eq. 10-33 PO (!-P)

where P is the server utilization. As p increases, the

probability of the empty and idle state occurring in the steady

state diminishes. For p sufficiently large, we are therefore

biasing the simulation results by starting the model in an

improbable (albeit, the most probable) state. This will be

reflected in a larger than expected propensity to be in the empty

state for some time after the simulation is started. This 4s

another way of stati.ng the fact that we are observing a

probability distribution which is conditional on the initial

state of the system. If the system is stationary, then, as time

proceeds, the state piobabilities will approach the steady state

4- 408 -

Report No. 4473 Bolt Beranek and Newnan Inc.

distribution. For a simple single server queueing system, the

9 error introduced by starting the simulation in the empty state is

Eprobably not severe for moderate utilizations. However, for more

complex systems, such as large queueing networks, the empty state

may correspond to an extremely improbable state.

The overall goal of the. analysis of the transient is to

reduce bias. This translates into two practical tasks. The

first task is to eliminate those observations obtained when the

F system probability distributions differ from the steady state

distribution. The seccnd task is to minimize the number of

discarded observations by choosing some reasonable starting state

for the simulation. Unfortunately, neither of these two goals of

transient analysis admits of an exact solution. It is virtually

impossible to decide what the steady state distribution is unti'l

the simulation is run and biased observations eliminated. It is

difficult to eliminate bias unless the steady state distribution

is known. In what follows, we discuss the approximate techniques

that we will utilize in our simulation work.

Thus far, we have discussed two mechanisms for the analysis

of the transient period. The first method predicts the transient

via a diffusion model for the system under study. The second

method is based upon the construction of an autoregressive

representation of the time series of observations on the system

(see Eq. 10-27). Eq. 10-12, due to Kobayashi, provides a formula

0- 40 9 -

Report, No. 4f473 Bolt Beranek and Newman Inc.

for the transient time of a GIG/I queueing systemi. For- an M/M/I1

simulator, with an average interarrival timre of '. sec'ond and an

average service timine of .75 seconds, EquaItion 10-12 yields a

transient period of '05 seconds. On 95 replioations of the IM/M/

simulator, the transient period com~puted by the autoregressive

anal"ysis routines and averaged over all replications was observed

to be 112. The agreement between the analytic and autlloregressive

methods is, in this kase, very good.

Unfortunately, ni-ither of these methods is available for

general use. There are n o diffusion mo(dýels f~or the comup"lex

ntoks, algorithns and protocolsa which we will investigate i

the course of this study. Furthermore, tne autoregressive

aproach to transient- 3nalysis i3 an ex po.-t facto methoji. That

is, the autoregressive method analyzes steady state data in order

WEto estimate tetransient period of the simulation. Access to

5teady state data require-, knowledge of the systen trarsient.

Hence, we can use the auttoregressive metnc,d to returoac.,tivily

verify a p'artleular choice for the transient period but not to

LIM-=estimPate the trannsient period in an a priori manner. Onp is

therefor-e frorced to relly on more primitive means by which t~o

perform t,-ransiernt analysis.

Thie basi c concept- behind the inethod implemented is toIattem.Dt to -Ut-serve the passage of the sjy~temi in~o the "1ste-ady

state.- he olloc.wi ng desc-ri::es thke outline of the analysis.

I i

Report No. 4473 Bolt Beranek and Ne-iman Inc.

1. Choose an interval size of m observations.

2. Start the simulator.

3. When the (k*m)th customer, k = I,..., leaves the system,

compute the kth cumulative mean as

1 km
Eq. 10-34 M - 1 X

1=1.

Where Xi is the parameter of interest, e.g., system

response time seen by thB ith customer.

4. Plot the Mk as a function of m*k.

The expected form of the output of the above process is as

follows. If the simulation is begun in the empt) and idle state

the sequence of cumulative means should begin at some number

which is small relative to the steady state mean, then increase

and asymptotically approach the steady state mean. The

projection onto the x-axis of the point where the curve is

reasonably flat representF the size (in observations) of the

transient period.

There are any number of objections that one might raise to

this procedure. First, since we are using a cumulative mean, we

are always including the transient period in our computations.

S- 411 -

Report No. 4473 Bolt Beranek and Newman Inc.

This will result in an estimate for the transient which is

probably too large. For example, assume (unrealistically) that

the sequence of packet delays is {xi} = [0,1,2,3,4,5,5,5,...}.

Then, using an interval size, m, of 5, the sequence of cumulative

means is {M k {2,3-5,4,4.3,4.5,4.6,4.6,...}. In this case, one

computes 6 cumulative means before one observes the "steady

state." Hence, one inight choose a transient of 6X5 = 30

observations despite the fact that the actual transient is only 6

observations long.

There are two other problems with the cumulative means

approach to the transient. First, it is possible that one can be

confused by real stochastic fluctuations in the data.. Second,

since the number of observations used in calculating the mean is

monotonicallv increasing, it would seem that one is forcing the

curve to flatten, which is the result one is trying to observe.

Thus, it is hard to tell whether the slope of the plotted means

has decreased bezause the 2'steady state" has been reached, or

because the denominator in the computation of the cumulative

a•,erage has grown so large that a t;,ansient period is no longer

observable. This would seem to result in an estimate of the

transient which is too small.

To the extent that the cumulative means method yields a

conservative (too large) estimate for the transient, the

procedure is acceptable. That is, t.he real risk one takes in an

4- 412 -

Report No. 4473 Bolt beranek and Newman Inc.

analysis of the transient is that the results that are produced

are biased toward the initial conditions. Biased results will

, 1ot be obtained if one overestimates the transient period.

We tested the cumulative average method on three independent

replications of our M/M/1 simulator, each with a server

utilization of .75. In computing the cumulative average, we used

an interval size of i30. The results are displayed in Figures

10-12 through 10-14. The y-axis represents the cumulative

average delay; the x-axis is in units of 100 observations. It

will be observed that the three curves have the same overall

shape. The average starts at a small value, rapidly rises and

overshoots the steady state mean :..u then falls back, eventually

becoming flat. The consistent increase of the cumulative mean to

a point greater than the system mean is a result which has been

observed by others [7].

If we identify the end of the transient period as that point

on the curve where the slope has become flat, we estimate the

transient period as roughly 500 observations on each replicati-o.

This is clearly longer than the 100 observations which were

estimated by using the analytic and autoregressive approaches.

The cumulative means method therefore seems to produce very

conservative results. While this result is somewhat disturbing,

the fact that we lack a suitable alternative procedure, and the

fact that an excessively large estimate of the transient is

-413 -

Report No. 4473 Bolt Beranek and Newman Inc.

-- ' I

........-.

- I * **

0 I
SI * *

I * ** **

SI * *****•I ******* ******
• -•I * *

SI * *
• •I *

• I
I

I
__ • +÷++++ 4÷+-.' +++ ÷÷~+++ ++÷÷÷++÷++++÷++ ÷++++++++++ ÷++++++÷ +÷+ ÷+÷++ ++ ÷++o 150 300 '450 600 750 900

OBSERVATIONS

Figure 10-12 Cumulative Means -- M/M/I Simulation

- 414 -

Report No. 4473 Bolt Beranek and Newman Inc.

II
Ii

I* *
I * *
I * ** *
i **
I *** **
I **
I ** *

SI *** **

I ***1*** ************* ** ***

I
I

I *
iV I

I
...

0 150 300 450 600 750 900

OBSERVATIONS

Figure 10-13 Cumulative Means -- M/M/1 Simulation

PT -415

Report No. 4473 Bolt Beranek and Newman Inc.

I
I

11

I* *
I
I * **

I * ****
I* ** *******

I* ** ** *****************
I * ** **

I

Ii iI
I
I

"i•0 150 300 4150 600 750 900

E OBSERVATIONS

SFigure 10-14 Cumulative Means--M/1Smltn

1- - 416 -

Report No. 4473 Bolt Beranek and Newman Inc.

better than an excessivejy small estimate, make the cumulative

average an "acceptable" procedure.

Fishman [3], in discussing transient analysis, makes the

somewhat surprising statement that various proposed methods (such

as cumulative means) which rely upon data to decide upon a

transient response have weak theoretical foundations. He

suggests an approach whilch seems to rely on gross assumptions

about the behavior of the conditional mean as a function of time.

We have not yet implemented this approach since we want to

further investigate the conditions under which Fishman's

assumptions hold.

The second goal of the analysis of the transient is to

reduce the size of the transient period by choosing a starting

state which is more representative of the system state. We have

deferred a detailed study of this question until we have more

simulated network data to examine.

The overall conclusion that one can draw about the problem

of the analysis of the transient is that totally satisfactory

methods do not seem to exist. We intend to actively pursue this

issue.

' - 417-

Report No. 4473 Bolt Beranek and Newman Inc.

10.2 Specification of the Analysis Package

The simulation analysis package has been implemented as a

set of SIMULA procedures and classes which are ca.iled and created

by a command module. The package will ultimately be extended toIi
incorporate the facility to design and analyze multifactor

experiments although these routines have yet to be specified and

written. In this section, we describe the structure of the

Sanalysis package (software and algorithms) as currently

implemented.

k Command Languaze

All analysis routines are callable from a SIMULA program

called CMD. The commands in CMD have a tree structure as

depicted in Figure 10-15. As can be seen, there are three main

branches to the CMD tree: ANALYZE, TEST and COMPUTE.

The ANALYZE branch (Fig. 10-16) currently has one main

option, ANALYZE SIMULATION, which is used for the analysis of

simulation output data via either BATCH MEANS or AUTOREGRESSION.

Once one is in the AUTOREGRESSION branch of the ANALYZE

SIMULATION subtree, one has t.e ndditional options of computing

and displaying the correlogram and spectrum of the data as

estimated from the autoregressive coefficients. A sample ANALYZE

session is shown in Figure 10-17.

-'418-

IN4
E Report No. 4473 Bolt Beranek and Newman Inc.

ANALYZE

!

jr

Figure 10-15 CMD Analysis Modes

- 419 -

Report No. 4473 Bolt Beranel: and Newman Inc.

II

SIMULATIONi

I L-IZo J

AUTOREGRESSION BATCH MEANS

Figure 10-16 ANALYZE Subtree

- 420 -

Report No. 4473 Bolt Beranek and Newman Inc.

@run cmd

> mode is analyze

>> analyze simulation

S>> simulation analysis via batch means

>> input file: xl.trc

>> output file: xl.bat

>> size of independence test: .10

>> confidence interval: A5

S>> one sided or two sided test for independence (1 or 2): 1

>> beginning batch means analysis

S>> done

>> simulation analysis via

>> analyze

> mode is

14 garbage collection(s) in 36 ms

End of SIMULA program execution.
CPU time: 12:0.45 Elapsed time: 57:39.75

Figure 10-17 Sample ANALYZE Session

- 421 -

4%

Report No. 4473 Bolt Beranek and Newman Inc.

The TEST branch (Fig. 10-18) currently has two main options:

TEST INDEPENDENCE and TEST DISTRIBUTION. The former tests the

hypothesis that the data contained in a user-specified file are

independent and identically distributed; the latter tests the

hypothesis that the data are distributed according to a

user-specified distribution function. Currently, two tests for

15 independence, that described in Equations 10-8 through 10-11 and

the periodogram are included as options. The distributions that

may be tested -Lcor are the CHISQUARE, EXPONENTIAL, NORMAL and

UNIFORM distributions. The parameters belonging to the

chi-square (degrees of freedom) and uniform (lower, upper bound)

distributions must be specified by the user. The parameters

belonging to the normal (mean, variance) and exponential (mean)

distributions may be either supplied by the user or estimated

from the data. A sample session is shown in Figure 10-19.

The COMPUTE branch of" the command tree (Fig. 10-20) has two

options: FILE STATISTICS and CORRELOGRAM. The FILE STATISTICS
r

option computes the sample mean, variance, standard deviation and

confidence intervals. The CORRELOGRAM option computes the

correlogram out to any lag and displays the results graphically

on the terminal or outputs the graph to a file. A sample session

is shown in Figure 10-21.

422

Report No. 4473 Bolt Beranek aid Newman Inc.

FiuES1-8T ES ute

S11

A= DISTRIBUTION

PARAMETERS, =PARAMETERS .PARAMETERSl | PARAMETERS|

SFigure 10-18 TEST Subtree,

S.... 423 -

-*=_________________ O_--AL~ ~ ~ ~ 1 ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~

Report No,. 1,73 Aolt Beranek and Newman Inc.

run cmd

> mode is 7

> options are: analyze, test, computeŽ

> -.ode is test

»> test ?

>> options are distribution or independence

S> test distribution

> distribution type:

> options are uniform, exponential; normal, chi-square

>> distribution type: chisquare

> input file: rngchi.out

>> degrees of freedom: 999

S-> Size of test .01

)>> kolmogcrov-smirnov critical value -0.23052

>> computed test statistic 0.24345
> hypothesis of chi-square distribution not accepted at 0.010 level

>> distribution type:

>> test

> mode is

garbage collection(s) in 6 ms

End of SIMULA program execution.
CPi timne: 1.60 Elapsed time: 1:23.21

Figure 10-19 Sample TEST Session

- 424 -

Report No. 4473 bolt Beranek and Newmnan Inc.

,

~l

III CORFIELORM j E FI!,E STATISTICS

I. -

GRAPH COFDEC INTERVAL

I

Figure 10-20 COMPUTE Subtree

_ __- 425 -

Report No. 4473 Bolt Beranek and Newman Inc.

@run cmd

> mode is ?

> options are: analyze, test, compute

> mode is compute

>> compute ?

>> options are correlogram, file stat'.stics

>> compute file statistics

>> inDut file: rngchi.out

>> file size: 50

>> mean: 1016.3793943787

>> variance: 1482.7828710812

>> standard deviation: 38.50691Q781i

>> confidence interval: .99

>> 0.990 confidence interval: 14.59668

>> confidence interval: 0

>> compute

> mode is

I garbage collection(s) in 7 ms

End of SIMULA program exe.iaton.
CPU time: 0.67 Elapsed 4: 46.26

Figure 10-21 Sample COMPUTE Session

-1426 -

I;%

Report No. 4473 Bolt Beranek and Newman Inc.

10.3 Specification of Analysis Routines

In this section we describe the major SIMULA modules which

are called from the command level of the analysis package.

a 10.3.1 Data Handling Utilities

10.3.1.1 CLASS IOFILE(FILENAME);
TEXT FILENAME;

Each IOFILE object references a disk file named FILENAME.

The object can then be accessed and controlled via tape

control-like procedures. IOFILE objects can be repeatedly read

or overwritten in a sequential mnnner. They may be open for

either reading or writing although not for both simultanecusly.

procedures

CLOSEFILE; closes the file

RESET; allows the file to be
read again in sequential fashion.

REWRITE; allows the file to be
written over.

real procedure READ; reads the next (real)
record in the file

WRITE (X,D,W); writes the real constant
X to the file in format, DW.
(places to right of decimal,
total field width)

4 J27-

1'

Report No. 44-73 Bolt Beranek and Newman Inc.

attributes

boolean EOF; is set to true if the
last record in the file
has been read

10.3.1.2 IOFILE CLASS FILE;

A FILE object is created and can be treated in the same

manner as an IOFILE object with the additional feature that when

a FILE object is created, various statistical characteristics of

' the file are computed and become permanent attributes of the FILE

obje'lt.

attributes

long reýi MEAN;

long real SAMPLEVARIANCE;

long real STDDEV; standard deviation

integer COUNT; size of file

10.3.2 Statistics Utilities

10.3.2.1 CLASS RANDOM:

RANDOM is a dummy class which allows convenient access to

the properties of various standard distributions. These

distributions are used, in turn, by the various statistical

procedures.

-428 -

N4

F4
Report No. 4473 Bolt Beranek and Newman Inc.

10.3.2.2 RANDOM CLASS CHISQUARE (PARAMETER);
LONG REAL ARRAY PARAMETER;

A CHISQUARE object contains useful information about the

chi-square distribution with PARAMETER(I) degrees of freedom.

Procedures

long real procedure cumulative distribution
CDF(Z); real Z; function

oLormu. as

CDF [3, eqs. 26.4. 4 , 26.4.5, 26.4.141

10.3.2.3 RANDOM CLASS EXPONENTIAL (PARAMETER);
LONG REAL ARRAY PARAMETER;

An EXPONENTIAL object contains properties belonging to an

exponential distribution Aith mean (PARAMETER(1))-1

Procedures

long real procedure cumulative distribution
CDF(Z); real Z; function

f ormulas

CDF(Z) = 1-exp(-Z*PARAMETER(1))

4- 429 -

Report No. 4473 Bolt Beranek and Nlewman Inc.

10.3.2.4 RANDOM CLASS NORMAL (PARAMETER);
LONG REAL ARRAY PARAMETER;

A NORMAL object contains properties of the normal

distribution with mean PARAMETER(1) and standard deviation

PARAMETER(2).

Procedures

long real procedure cumulative distribution
CDF(Z);real Z; function

formulas

CDF [1, Eq. 26.2.19]

10.3.2.5 RANDOM CLASS UNIFORM (PARAMETER);
LONG REAL ARRAY PARAMETER;

A UNIFORM object contains properties of the uniform

distribution on the interval [PARAMETER(1), PARAMETER(2)].

Procedures

long real procedure cumulative distribution
CDF(Z); real Z; function

formulas

CDF(Z)=O Z < PARAMETER(1)
1 Z > PARAMETER(2)

.Z-PARAMETER(1) otherwise
PARAMETER(2)-PARAMETER(1)

- 430 -

Report No. 4473 Bolt Beranek and Newman Inc.

10O3.2.6 LONG REAL PROCEDURE CHISQP (DFP);
INTEGER DF; REAL P;

A call to CHISQP(DF,P) computes the Pth quantile of the

chi-square distribution with DF degrees of freedom,

formu. as

[3, p. 498]

10.3.2.7 LONG REAL PROCEDURE CONFIDENCE (PROB, DEV,N);
REAL PROB, DEV; INTEGER N;

A call to CONFIDENCE returns the PROB confidence interval

for data having standard deviation DEV and degrees of freedom

N-I.

formulas

see Eq. 9-17

10.3.2.8 LONG REAL PROCEDURE STDZ(P);
REAL P;

A call to STDZ(P) returns the Pth quantile of the standard

normal distribution.

formulas

[3, p.498]

-431-

Report No. 4473 Bolt Beranek and Newman Inc.

10.3.2.9 LONG REAL PROCEDURE STUDTP (DFP);
INTEGER DF; REAL P;

A call to STUDTP (DF,P) returns the Pth quantile of the

Student-t distribution with DF degrees of freedom.

formulas

DF<6 [2, Appendix A, Table 5]

else [3, p. 499]

10.3.3 Major statistical Routines

The following are the primary modules which implement the

various hypothesis testing methods necessary for the analysis of

simulation data.

10.3.3.1 CLASS IIDTST (DATABETATYPE);
REF(FILE)DATA; REAL BETA; INTEGER TYPE;

An IIDTST object is created to test, at the BETA level of

significance, the hypothesis that the data contained in FILE

object DAIA are independent and identically distributed. For a

one-sided test, TYPE should be set to 1; otherwise TYPE should be

set to 2.

attributes

real CK; test statistic

real CRITVAL; critical value

boolean RESULT; true if hypothesis is
accepted, else false

- 432 -

Report No. 4473 Bolt Beranek and Newman Inc.

formulas

[3, p. 239]

10.3.3.2 CLASS KSGENL (INPUT, ALPHA, TYPE, PARAMETER);
REF(FILE) INPUT; REAL ALPHA;
TEXT TYPE; LONG REAL ARRAY PARAMETER;

A KSGENL object is created to test the hypothesis that the

data contained in FILE object INPUT have distribution TYPE with

parameters contained in the PARAMETER array. TYPE may be

"CHISQUARE," "EXPONENTIAL," "EXPKNOWN," "NORMAL" or "UNIFORM."

The cont.ents of array PARAMETER are as described in 10.3.22 -

10.3.2.5.

The test used is a version of the Kolmogorov-Smirnov test.

It is assumed that the characteristics of the distribution tested

for are completely known. For example, we do not use this test

to determine whether or not the data are normally distributed,

but instead, whether or not they are normally distributed with a

specified mean and variance. The exception is the test for

exponentiality. TI a test for the exponential distribution is

desired and the characteristics of the data are known, TYPE

should be set to "EXPKNOWN." If the characteristics are unknown,

then TYPE should be set to "EXPONENTIAL." In the latter case,

the mean will be estimated from the data itself.

4- 33 -

Report No. 4473 Bolt Beranek and Newman Inc.

attributes

boolean RESULT; test result

real MAXD; test statistic

real CRITVAL; critical value

formulas

[2, Algorithm 8.4.2]

10.3.3.3 CLASS KSNMLF(INPUT, ALPHA);
REF(FILE) INPUT; REAL ALPHA;

A KSNMLF object is created to test, at the ALPHA

significance level, the hypothesis that the data in FILE object

INPUT are normally distributed. The test used is the

Kolmogorov-Smirn-v test and the mean and variance of the

distribution tested for are assumed unknown and are estimated

from the data in INPUT. This test is used by CMD for sample

sizes which exceed 50. For smaller samples, the Wilke-Shapiro

test for normality is used [see 10.3.3.6].

atribptes

boolean RESULT; test result

rseal MAXD; test statistic

real CRXTVAL: critical value

fo2W ul as

[2, algorithm 8.4.3]

-434-

Report No. 4473 Bolt Beranek aihd Newman Inc.

10.3.3.4 CLASS PERIODOGRAM (DATA, ALPHA);
REF(FILE) DATA; REAL ALPHA;

PERIODOGRAM is used to examine, at the ALPHA significance

level, the hypothesis that the data contained in FILE object DATA

are independent and identically ,istributed. The class code

computes the periodogram {I

the periodogram in a temporary FILE object, and then uses the

Kolmogorov-Smirnov test to determine if the {I

exponentially distributed.

attributes

boolean RESULT; test results

ref(FILE)IM; temporary file object
containing the periodogram

ref(KSGENL)TEST; Kolmogorov-Smirnov test
object for exponential
distribution

-• formulas

[5, eqs. 5.68, 5.69, 5.703

10.3.3.5 CLASS SERIAL (DATA, MAXLAG);
REF(FILE) DATA; INTEGER MAXLAG;

A SERIAL object contains, for the data in FILE object DATA,

the autocovariance and autocorrelation sequence out to lag

MAXLAG. A call to procedure LAGGRAPH places the results of t'

computation of the correlogram for lags FIRSTLAG through MAXLA6

i-435 -

Report No. 4473 Bolt Beranek and Newman Inc.

in array GRAPH. When the values in GRAPH are written to a

peripheral device, the result is a graph of the correlogram, The

x-axis is the lag, the y-axis is the estimated serial correlation

coefficient. Only 65 lags may be plotted at one time. The

",alues of the serial correlation coefficient for lags for which

the absolute value of RHO exceeds MAXRHO are not plotted.

attributes

real array R(0:MAXLAG); estimated autocovariance
sequence

real array RHO(O:MAXLAG); correlogram

character array GRAPH; graph of correlogram
(0:64, 0:20)

procedures

LAGGRAPH (FIRSTLAG, LASTLAG, MAXRHO);

formulas

(see Eq. 10-15)

10.3.3.6 CLASS SWTEST (DATA, BETA);
REF (FILE) DATA; REAL BETA;

Performs, at the BETA significance level, the Shapiro-Wilke

test for normality on the data contained in FILE object DATA.

The number of observations cannot exceed 50.

- 436 -

Report No. 4473 Bolt Beranek and Newman Inc.

attributes

boolean RESULT; indicates the outcome
of the test.

long real CRITVAL; critical value of the test

long real WK; test statistic

real array COEFFICIENTS; Shapiro-Wilke coefficients
for computation of the test
statistic
[3, Table D.1]

real array DATAARRAY; critical values
[3, Table B.2]

formulas

[3, Eq. 2.80]

10.3.4 Primary Analysis Routines

The following are the major simulation analysis routines.

10.3.4.1 CLASS AUTOREGRESSION (DATA, ALPHA, INTERVALSIZE, OUTPUT);
REF (FILE) DATA; REAL ALPHA, INTERVALSIZE;
REF (JUTFILE) OUTPUT;

The creation of an AUTOREGRESSION object produces an

autoregressive representation of the data contained in FILE

object DATA. (See Sec. 10.2.) The chi-square test used to

determine the order of the representation is of size ALPHA. An

INTERVALSIZE interval estimate about the mean is produced. The

results are written to OUTFILE object OUTPUT. The autoregressive

coefficients, interval estimates and the sample variance are

computed for all orders up to Q.

- 437 -

Repoot No. 4473 Bolt Beranek and Newman Inc.

attribute!!

long real array B(I,J); the autoregressive coefficients
for the ith ordcr representation

long real array R(I); autocovariance function

long real array RHO(I); serial correlation coefficient

long real array V(I); sample variance of sample
rcan for the Ith order representation

long real array G(I); spectrum of data (indexed in
units of pi/64);

long real array F(I); degrees of freedom in the Ith orderS~representation

long real array T(I); test statistic for chi-square
test for the Iti order representation

long real array critical value of the chi-square test for

CRITICAL (I); Ith order representation

character array RHOGRAPH; graph of correlogram

character array graph of spectrum
SPECTRUMGRAPH;

integer Q; waximum order representation computed

real array LOWER(I),UPPER(I); end points of confidence interval
for Ith order representation

integer P; order of representation chosen by test

procedures

COMPUTEAUTOCOVARIANCE; computes the autocovariance
function up to lag Q.

COMPUTEB; computes the autoregression
coefficients f"r each order
representation up to Q.
[3, Eq. 5.61]

COMPUTESIGMA2; [3, Eq. 5.62]

-438-

Report No. 4473 Bolt Beranek and Newman Inc.

COMPUTET; computes the test statistic

V for determining the order of the
autoregressive representation.

OMT R[3, Eq. 5.641

SCOMPUTEVBAR; computes an estimate for the
sample variance of the sample
for each order representation.
[3, Eq. 5.54]

COMPUTEF; estimates the number ofS • degrees of freedom for

each order representation.
[3, Eq. 5.74]

CeMPUTESPECTRUM; computes the spectrum
of the input data.
[3, Eq. 5.90]

COMPUTERHO (LAG); estimates the correlogram. For
integer LAG; LA(greater than the order of

the autoregressive representation,
[3, Eq. 5.771 is used. Otherwise,
Equation 10-15 is used.

GRAPHRHO (FIRSTLAG, LASTLAG, produces a character array
MAXRHO); integer FIRSTLAC; containing a graph of the correlogram
LASTLAG; rea? MAXHHO; for all lags betwoen FIRSTLAG and LASTL

The correlation coefficients for lags
which exceed MAXRHO are not displayed.

integer procýedure computes the number of
TRANSIENT(VAL); observations required for the
real VAL; X

VAL.
[3 ecs. 5.79, 5.82]

vr)cedure computes the critical
COMPUTECRIT2CALVALUE; values of the chi-square distrtbution.

procedure COMPUTEINTER- .computes the interval
VALESUIMAI7 estimates for each

representation up to order Q.

integer procedure returns the value of the
AUTOCORRANGE (VAL); first lg for which the serial correlat:
real. VAL; coefficient is less than VAL.

I4.
' •. •.:-1439 -

Report No, 4473 Bolt Beranek and Newman Inc.

procedure GRAPHSPECTRUM; puts the graph of the
spectrum into a character array.

procedure OUTPUTRESULTS; writes a summary of the autoregressive
analysis to the output file.

procedure COMPUTEP; computes the autoregr.-ss2.ve
order via [3, p.251].

10.3.4.2 CLASS BATCHMEANS (BETA, INTERVAL, DATA, TYPE,
OUTPUTRESULTS); REAL BETA, INTERVAL; REF (FILE)
DATA; INTEGER TYPE; REF (OUTFILE) UUTPUTRESULTS;

When a BATCHMEANS object is created, the :.atch means

simulation analysis is performed on the data contained in FILE

object DATA (see sec. 10.1). INTERVAL interval estimates are

computed. The test for independence of the oatch means is

performed at the BETA significance level. The test for

independence is a one-sided or two-sided test (TYPE = 1 or 2)

depending upon whether or not the autocovariance function of the

original data is monotonically decreasing. The results of the

analysis are written to OUTFILE object OUTPUTRESULTS. The

algorithm as implemented is described by Fishman [3, pps.

237-.24~7].

a'tributes

boolean IIDDATA; are batch means iid?

real LOWER, UPPER; end points of
confiidence interval

inteET. FIRSTIIDDATA; number of observations in first
iteration for which the batch means
are independent

- 440 -

S,ý

Report No. 4473 Bolt Beranek and Newman Inc.

ref (IIDTST) IIDRESULT; IIDTST object for
examining independence of
batch means

10.3.4.3 TRANS.SIM

Performs the analysis of the transient period via the

cumulative moving average method (see sec. 10.2).

10.3.4.4 TRUNC.SIM

Deletes the first n observations from a file (n is prompted

for).

I4

•) - 4~41 -

Report No. 4473 Bolli Beranek and Newman Inc.

References

1. Abramowitz, Milton and Stegun, Irene, Handbook of

Mathematical Functio.n~s, Dover Press, 1965.

2.Allen, Arnold 0., Probability, Stat-istics, and Queueing

Theory, Academic Press, 1978.

3. Fisi-man, George, Principles of Discrete Event Simulation,

Wiley-Interscience, 1978.

4. Kleijnen, Jack P. C., Statistical Techniques in Simulationi,

Marcel Dekker, Inc., New York, 1974.

5. 'K(obayashi, Hisashi, Modeling and, Analysis, Addison-Wesley,

1978.

6. Makhoul, John, "Linear Prediction: A Tutorial. Review," Proc.

IEEE, vol. 63, April 1975., pp. 561-580.

7. Sargent, Robert G., "Statistical Analysis of Simulation

Output Data," Simuletter, vol. 8, no. 3, April 1977.

-442-1

LReport No. 4473 Bolt Beranek and Newman Inc.

- 11. RANDOM NUMBER GENERATORII.
Central to the acquisition of useful results from a

A simulator is the ability to generate numbers which have the

properties of a random sequence. For a given simulation run, the

random number generator will be called upon to determine the

interarrival times between packets, the length of packets, the

execution times for certain IMP processes, when line errors

occur, etc. For some simulation experiments it is not

unrealistic to assume that we will generate 105 packets and make

as many as 102 calls to the random number generator for each

packet. Thus, one can estimate that, for some simulation runs,

as many as 107 calls will be made to the random number generator.

The quality (or lack thereof) of the random number generator

impacts the results of simulation experiments in innumerable

ways. if thc generator cycles during the experiment, then the

output data may possess correlations which are not properties of

the model under investigation, but artifactual results. Such

correlations will undoubtedly impact the accuracy of inter,,al

estimates, although the errorE may not be easily detectable. If

the sequence of numbers produced by the random number generator

is not sufficiently random or has a distribution different from

Shat expected, then similarly erroneous results can occur. Thus,

it is worthwhilc to devote time to studying the properties of the

SIMULA generator.

- 4
-\ C - 4143 -*

Report No. 4473 Bolt Beranek and Newman Inc.

Any given call to a random number generator specifies a

particular distribution. For example, calls to generate message

interarrival times specify an exponential distribution, calls to

produce line errors (as currently implemented) specify a uniform

distribution. In all cases, however, the distribution is

produced by first generating a stream of deviates uniformly

distributed in the interval (0,1) and then transforming these

unifo-m deviates to produce a stream of variates with the desired

distribution function. This transformation can be accomplished

in the following manner [4]. Assume X is a random variable with

distribution function FX. Define FX-I as the inverse of FX such

that

Eq. 11-1 F X (Y) = min{x:F(x() > Y}

If U is a random variable uniformly distributed as on (0,1) then

if Y is defined as

Eq. 11-2 Y = F X(U)

- 444 -

Report No. 4473 Bolt Beranek and Newman Inc.

I we have

Prob [Y < y] = Prob [F-I(U) < y]

Eq. 11-3

- Prob [U < Fx(Y)] = Fx(Y) = Prob [X < y]

Thus Y and X have the same distribution. For example, to produce

an exponential distribution, we produce uniform deviates on (0,1)

and take the negative logarithm.

From the above discussion, we can conclude that the quality

of the random number generator depends roughly on the following

criteria. Does it produce "enough" (in our case >107) random

variates. Are these variates uniformly distributed on the

interval between 0 and 1? Are they distributed in a random

fashion? We have devoted a fair amount of effort in attempting

to answer these questions for the SIMULA random number generator.

The SIMULA random number generator is of a class called

multiplicative congruential generators. Such generators produce

variates recursively according to

Eq. 11-4 Z aZ (mod m)

i

. , K 4

Report No. 4473 Bolt Beranek and Newman Inc.

In the SIMULA generator, a 515 and m = 2 In order to

produce random numbers between 0 and 1, one forms the seque'ice

Eq. 11-5 U. = Zi/m

Since there are 235 non-negative integers which can possibly

be formed through the application of Equation 11-5, the sequence

{Zi} has 235 possible members. However, not all of these numbers

can be generated in the same sequence. That is, for any

particular choice of ZO, the period of the resultant sequence

will be less than 235. In addition, not all sequences will be

equally random. In practice, one wants the largest possible

period, both to guarantee the ability to make a large number of

calls to the generator and to ensure that the [Ui} are

sufficiently dense on (0,1).

The properties (period, uniformity, randomness) of a

multiplicative congruential generator are determined by the

choice of the coefficients and initial seed, Z There are three

categories of methods that can be used to investigate the

properties of multiplicative congruential generators. The first

category involves determining, via number theoretic methods,

criteria for the selection of a and m. The second category

involves theoretical tests of the properties of a sequence of

- 446 -

Report No. 4473 Bolt Beranek and Newman Inc.

variates produced by the generator. The third category involves

actual empirical testing of a gene,'ated sequence.

It may be shown via number theoretic methods [4] that the

Requence {ZiJ has a maximal period of m/4 if

Eq. 11-6 a = 3 or 5 (mod 8)

it can be computed that

Eq. 11-7 515 = 5 (mod 8)

so that the SIMULA generator has period 235/4 or approximately

1010. Kobayashi [4] indicates that to achieve the maximal period

one requires an odd integer seed. We have arbitrarily chosen as

the nominal seed for experiments the value 314159. In his

discussion on random number generators, Kobayashi also cites a

result due to Coveyou and Greenberger that the first order serial

correlation coefficient, P , for a multiplicative congruential

sequence lies between a-1 + a/m. Since we want P1 to be close

to zero, this suggests that a = r which results in PIzO

In the SIMULA generator, we have a z m. While this resuit

might seem troubling at first. Kobayasni states that generators

1- 47 -

Report No. 4473 Bolt Beranek and Newman Inc.

with a -- '/ have been demonstrated to have undesirable

randomness properties despite the low first order serial

correlation. If successive 3-tuples produced by such generators

are plotted, they are found not to be uniformly distributed in

the unit cube but rather tc lie on 15 parallel planes. However,

because Coveyou's result raises questions about the first order

correlation coefficient in the SIMULA-generated seqi'-nce, we have

implemented an empirical test which is described below.

Of the theoretical tests for random number generators, the

most important and well-known is the spectral test. The theory

behind this test is extensively discussed by Knuth [3]. The

spectral test is used to examine the relative merits of

alternative generators. It produces a sequence of quantities,

Ok which measure the randomness of adjacent k-tuples in the

sequence {U.1. In practice, Ck is computed out to a maximum of

=4. Fortunately, K(nuth has applied the spectral test to the

random , mber generator in SIMULA. Of 13 generators to which he

applied the test, he found that the SIMULA generator was the

best.

Finally, there is a series of empirical tests wbicn we have

applied to sequences of numbers produced by the SIMULA generator

Since no generator is "perfect," the empirical tests 3re 4 es.gred

6,) aetermine if the,-e is a significant departure ýf the ge... J

pseudorandom sequence from ,,tr le random bdzViC. . In

-448-

Report No. 4473 Bolt Beranek and Newman Inc.

particular, three hypotheses are investigated for a sequence of

variates [Ui} [2]

HI : UI,...,Un are independent and identically distributed.

H H2 : UI,...Un each have U(0,1)

H3: k-tuples formed from adjacent observations in UI,...U-- * - n
are uniformly distributed in the k-dimensional

hyper-ube.

We have implemented at least one test for each of the above

hypotheses. The results are described below.

Chi-Square Test

The chi-square statistic [3] tests the hypothesis that

U1 ,... ,'U are uniformly distributed on (0, 1). In performing the

test, one divides (0, 1) into k non-overlapping subintervals and

forms the test statistic

S t.

Eq. 11-8 V=~ S ()n-

44

Report No. 4473 Bolt Beranek and Newman Inc.

where Y is "'-e number of observations falling into the Sth

subinterval and P5 is the size of that interval. The statistic V

should be distributed according to the chi-square distribution

with k-1 degrees of freedom. On a given run of the test, we

therefore accept the hypothesis at the a level of significance

if V lies between the a and 1- a percentile values of the

chi-square distribution.

We performed 50 independent replications of the chi-square

test of size .10 with k = 1000 and n = 200,000. On these 50

replications, the test statistic V assumed a value outside of the

acceptance region 5 times. This is exactly what one would expect

under the hypothesis of uniformity for a test of size .10.

Since the V statistic is chi-square distributed under the

hypothesis tested, a more suitable method of evaluating the test

results is to examine whether or not the sequence of 50 test

statistics does indeed have the chi-square distribution with 999

degrees of freedom [2]. In order to do this we applied a

"goodness of fit" test known as the Kolmogorov-Smirnov test [1]

to the sequence of V's. We rejected the hypothesis that the V

are chi-square at the .01 level. This result implies that there

is less than a 1 in 100 chance that the test statistic does have

the expected distribution, a disappointing result which we are

currently investigating. The results of the chi-square test are

shown in Figure 11-1.

- 450

"f Report No. 4473 Bolt Beranek and Newman Inc.

Ii

i replication statistic replication statistic

1 1051.86 26 1051.52
2 1000.14 27 1033.06

V 3 1038.59 28 950.37
4 952.57 29 1035.04
5 1029.26 30 1060.41
6 983.49 31 1073.94

V 7 1014.51 32 1031.18
8 965.62 33 1051.20
9 1005.16 34 1030.69

10 974.08 35 1039.60
11 976.50 36 1055.94
12 1030.48 37 1027.84
13 1104.91 28 1082.73
14 1011.53 39 1011.09
15 1036.02 40 950.73
16 1031.04 41 1080.07
17 1024.73 42 985.21
18 986.16 43 999.93
19 1028.65 44 945.99
20 1017.51 45 1033.63
21 1021.71 46 1033.42
22 1057.12 47 924.97
23 977.17 48 997.67
24 1006.67 49 918.32
25 1037.22 50 991.72

F Acceptance Region for .10 size chi-square test = [926.62 , 1073.66)

Kolmogorov-Smirnov Test Statistic = .243

I Kolmogorov-Smirnov .01 Critical Value .231

' C:

Figure 11-1 Chi-Square Test Results

"_-. _- 451 -

Report No. 4473 Bolt Beranek and Newman Inc.

One subtlety of the chi-square test should be pointed out.

The test statistic V will be chosen from the chi-square

distribution with k-1 degrees of freedom under the hypothesis of

uniformity only if the original {Ui} observations are

independent. Hence the chi-square test "proves" uniformity by

assuming independence.

Serial Test

The serial test statistic [2] tests the assumption that

adjacent k-tuples are uniformly distributed in the k-dimensional

unit hypercuoe. As such, it is a generalization of the

chi-square test While the test is, in theory, applicable for

any value of k, the size of computer memories generally miakes 2 a

practical limit. Thus, the serial test as implemented tests the

hypothesis that 2-tuples formed from adjacent pairs in the

sequence U1 , ... ,Un are uniformly distributed on the unit square.

In each replication of the test, we divided the unit square

into 128X128 subsections, generated 200,000 random numbers, and

formed 100,000 ordered pairs from the generated sequence. We

then determined how many ordered pairs fell into each of the

subsections. If we denote this number as Yi for the ith

subsection, then the test statistic is given by

- 452 -it; _ _ _ _ _

Rcport. No. 41'73 Dolt Beranek and Newman Inc.

Eq. 11-9 S - 128"128 *12 200000
200000 1 Y i Y-2 1"•2T'2

According to the theory of the test, statistic S should have the

chi-square distribution with 128*128-1 degreŽes of freedom.

On 50 independent replications of the test at the .10 level,

the test statistic fell into the rejection region 5 times (Fig.

ii-2). This result is consistent with the hypothesis that

adjacent 2-tuples fcrmed from U1,...,Un are unifo.rmly distributed

on the unit square. We also tested the hypothesis that the set.

of 50 values of the test statistic is chi-square and found that

we could accept the hypothesis at the .05 level of significance.

Runs up/down

The runs 4p and runs down tests [2,3] are used to examine

the hypothesis that the U1Un are independent and identically

distributed. In what fGllows, we describe runs up (down). We

generate a sequence of n random digits. We then form a related

binary sequence by replacing each Uk by 1 if Uk>(M)Uk-1 and 0

if Uk<(>)UkkI. Each run of 0 followed by k consecutive 1's

represents a -,run. - (down)" sequence of length k+1. For each k

from I to 5, let C.y. "'epresenL tn.. number of runs up (down) of

length k. Let ',6) represent the number of runs up (down) of

length greater th'.an • Then the test statistic is

- 453-

Report No. 4473 Bolt Beranek and Newman in2.

replication statistic replication stati- c

1 16365.39 ?6 16210.73

2 16528.91 27 16257.26

3 16026.57 28 16223.84

14 16423.39 29 16989.30

5 16322.80 30 16445.02

6 16333.94 31 16254,64

7 16244.15 32 16591.82

8 16216.63 33 16258.24

9 16244.49 34 16192,38

10 16284.46 35 16435.85

11 16235.30 36 16807.11

12 16199.26 37 16238.25

13 16402.75 38 16347.04

S!4 16330.99 39 16358.84

15 16189.10 10 163ýs6.52

16 16508.59 41 16431.59

17 16380.47 42 16196.97

S18 16630.49 43 16179.93

19 16567.24 44 16204.83

20 16020.35 45 16313.95

21 16487.62 46 16190.74

22 16458.78 47 16546.60

23 16210.07 48 16612.14

24 16038.70 49 16601.65

25 16284.78 50 16271.b8

Acceptance Region for .10 size test. [16086.34 , 16681.94)

Kolmogorov-Smirnuv Test Statistic = .185

Kclmogorov-Smirnov G5 Critical Value .192

Figure 11-2 Serial Test Results

454-

It

Report No, 4473 B6lt Beranek and Newman Inc.

6

Eq. 11-10 V (C(i)-nb)(C(J)-nb)aij
-L,j~1.

Where the bi and a ij are given in [3]. This statistic should

have the chA-square distribution with 6 degrees of freedom.

On 50 replications of the runs-up test at significance level

.10, the critical value fell into the rejection region 3 times,

somewhat better than might be expected (Fig. 11-3). When the

Kolmogorov-Smirnov test was run to examine the hypothesis that

the set of 50 V statistics did have the chi-square distribution

with six degrees of freedom, we found that we could accept the

hypotLesis at the .20 level. On 50 replications of the runs down

test, the test statistic fell into the rejection region six times

(Fig 11-4). Once again, we found th;?t the Kolmogorov-Smirnov

test allowed us to accept the hypothesis of chi-square

distributed V at the .20 level.

Periodogram

Thus far, none of the tests described is sensitive to

possible periodicities in the sequence of random numbers. The

tests of uniforrmity are totally insensitive to the order of the

sequence U ,U n The runs Lest would have a significant

amount of difficulty detecting cyclic patterrs. Hence, we

f require another empirical test to study the degree of correlation

4- 455 -

Report No. 4473 Bolt Beranek and jewman Inc.

replication statistio replication statistic

1 7.77 26 4.27
2 8.90 27 3.95
3 7.84 28 2.58
4 4.41 29 4.69
5 7.29 30 11.94
6 1.67 31 2.42
7 5.15 32 8.67
8 4.30 33 11.09
9 3.55 34 4.76

10 4.91 35 6.90
11 9.98 36 2.74
12 9.22 37 6.86
13 5.75 38 4.26
14 13.57 39 11.50
15 3.47 40 4.83
16 10.35 41 2.83
17 6.03 42 9.87
18 8.00 113 3.?2
19 4.00 44 5.86
20 2.20 45 7.09
21 12.77 46 6.01
22 4.58 47 3.90
23 4.30 48 8.40
24 0-94 49 4.140
25 4.79 50 8.94

Acceptance Region for .10 size chi-square test z 1 1.63 , 12.59 3

Koimogorov-Smurnov TesL Statistic = 110

Kolmogorov-Smirnov .20 Critical Value = .,51

Figure 11-3 Runs Up Te;SL

4- 456 -

Report No. 4473 Bolt Beranek and Newman Inc.

replication statistic replication statistic

1 7.59 26 4.242 6.36 27 %5.473 4.69 28 5.05
4 5.21 29 4.89
5 8.05 30 4.72
6 0.89 31 4.507 13.02 32 8.42
8 2.68 33 8.669 1.06 34 6.5510 4.97 35 9.0111 6.75 36 1.0212 2.99 3713 I.-,9 3.5213 11.19 38 12.4315 11.02 39 3.1815 11.02 40 4.69S16 9.13 41 5.0117 4.18 42 11.7318 3.84 43 6.3319 9.14 41 12.1820 2.95 45 7.6021 3.27 46 4.2222 6.74 47 4.8223 3.78 48 7.5724 6.63 .9 2.8125 5.06 50 12.38

Acceptance Region for .10 size chi-bquare test E 1.63 , 12.59]

-Kolmoorov-Smirnov Test Statistic = .082

Kologorov-Smirnov .20 Critical Value = .151

""gure 11-4 R us DOWn TestL

1' - "5' -

Report No. 4473 Bolt Beranek and Newman Inc.

in the 1U}. Such a test assumes particular importance for the

SIMULA generator given the result of Coveyou and Greenberger

discussed above.

One can study correlations in the Ui using the correlogram.

However, the results of calculating the estimated serial

correlation coefficients up to some large order are difficult to

interpret. That is, there is no obvious test that allows one to

accept or reject the hypothesis in question based upon the

computed correlogram [2]. Instead, we investigate the spectrum

of the random sequence. The periodogram is one means of

examining this spectrum [241].

If one generates X!,...,X and forms
n

1 n 127Timl

Eq. 11-11 Am x i=l
/n)

B x sin2
m / i=l

4- 458

t ! !

Report No. 4473 Bolt Beranek and Newman Inc.

then the sequence

Eq. 11-12 T A2 + B 2 m 1,n/2
m m m

is called the periodogram. If the {Ui} are independent and

identically distributed, then the [I m are exponentially

distributed.

In conducting this test, we generated, on each replication,

a secuence of 5000 numbers and cctputed {I,}. If the [Im} are

exponentially distributed, then t1he normalized cumulative

periodogram {Sm I formed by

SIi
Eq. 11-13 SM n/

i--1

should be uniformly distributed. We use the Kolmogorov-Smirnov

test to determine whether this is, in fact, the case. The test

statistic is

Eq. 11-14 D = max(ISk - 2k! r2 1)

- 459 -

Report No. 4473 Bolt Beranek and Newman Inc.

If the value of D is greater than the Kolmogorov-Smirnov critical

value, we reject the hypothesis that the Ui,...Un are i.i.d. If

D is less than the critical value, we accept the hypothesis. On

eleven replications of the test, vie accepted the hypothesis of

uniformity at the .20 level (Fig 11-5).

Listributions

The final hypothesis tested was that the SIMULA exponential

generator does produce variates according to an exponential

distribution. In order to do this, we generated 5000 numbers,

exponentially distributed with mean 1.0, on each of 5 independent.

replications. We tested for v~niformity using the

Kolmcgorov-Smirnov test at the .20 significance level and

accepted the hypothesis on each replication. The results of the

test are displayed in Figure 11-6.

- 460 -

gA

Repor No. 4473 Bolt Beranek and Newman Inc.

replication seed test statistic accept hypothesis?

--

1 314159 .01081 yes

2 14473533199 .00894 yes

3 28550536943 .01263 yes

4 24327905999 .01098 yes

5 1601135279 .01859 yes

6 21854494351 .01817 yes

7 27838846575 .01588 yes

8 22852979279 .01320 yes

9 25612892719 .01713 yes

10 6867478031 I01804 yes

11 2012148175 .01458 yes

.20 critical value 0214

Figure !1- P5riodogram Test

- 461 -

Report No. 41473 be, Beranek . J - an ine.

r-plication seed Lt•,;t • stic accept nypotnrsis

1 314159 °00676 yes

2 14473533199 .0108P yes

3 28550536943 .-'1106 yes

424327905,99 .00975 yes

5 1601135279 .005,se

.20 Kolmogorov-Smirnov Critical Value .0513

Figure 11-6 Test for Exponential Di~tr •ut•,-

-462-

Report No. J4473 Bolt B~eranek and NewmanTIl~

Referei1._.

1. AILei1, Arnoia X, Probability, Statistica and Queueijng

Theory, Academic Press, 1978

2. Fishman, George, Principles of Discrete E' oint Simulation,

Wiley-Inter science, 1978.

3j. Knuth, Donald, The Art of Computer Programming: Volume

2/Semi-Numerical Algorithms, Addison~-Wesley, 7

)4. Kobayasni, i-sh, -oeig ad Analysis, Addso-, ely

1978.

Report No. 4473 Bolt Beranek and Newman Inc.

APPENDIX 1. USING SIMULA

A.1.1 Reasons for Simula

Although Simula was designed for prograaming simulations, it

includes a general-purpose programming language as a base. it is

this base language which is the primary justification for the

choice of Simula for our simulation. In this section we discuss

the base language; the simulation extensions will be discussed

below.

The Simula base language is derived from Algol '60. In

fact, apart from a small number of minor incompatibilities, Algol

'60 is a subset of Simula. The major addition to Algol has been

a set of modularization and encapsulation facilities. These

facilities have been provided with a single syntactic construct,

the CLASS. Each class is a definition of (or template for) an

object. An objec~t is an instance of a class.

Ob ects may contain data, procedures or code. The data is

accessed, or the prccedure called, using dot notation:

A.B

Emeans that B f~eld (or procedure) which is part of the object A.

These references may be conveniently cascaded:

46- 4-

I-AI

! Report No. 4473 Bolt Beranek and Newman Inc.

Z A.B.C.D

means the D of C of B of A. Similarly, just as it is possible to

define arrays of integers, or functions that return integers, it

is possible to define arrays of objects or functions that return

objects. It is an important property of Simula that user-defined

classes are just as easy to use as built-in types.

Using the CLASS construct, it is easy to define

sophisticated queue handling facilities. This is important in

our simulation. For example, we have defined a class for queues

of packets which includes the funcfion "wait until a packet is

put on the queue then remove and r-urn it." IUsing Simula's

encapsulatioi facilities, this function can be included as part

of the definition of the class queue, so that any change to the

structure of the queue is invisible outside the class. For

example, durxng the development of the simulation, the packet

queues were changed from ordinary FIFO queues to priority queues.

This required recoding tLhe routine which adds an element to a

queue (adding 20 lines of code to accommodate the extra

complexity of a priority queue) and not one change to the rest of

the program.

The idea of a process is an integral part of the base

language, and was not aaded as part ef the simulation extenasons.

A process is just an object that contains code. Simula

4- 65 -

Report No. 4473 Bolt Beranek and Newman Inc.

automatically includes a pointer which indicates where the

process is in executing the code. The code is automatically

started when the object is created, and the process can then

transfer control to another process, or back to the i,ýain

program. Simula will remember where the process was when it left

off, so when control is transferred back to it, it will start 4
again from the right place.

'I

It is important that a process really is just an ordinary

object, so that all the operations which are possible for objects I
are possible for processes. For example, just a.s it is possible

to create a queue of packets, it is possible to create a queue of

processes. This enabled us to write a process scheduler which

simulated pre-emptive interrupt driven scheduling in the IMP.

It is a basic assumption of all simulation languages

(including the Simula extensions) that a process which uses t

seconds of a resource takes t seconds of simulated time.

Unfortunately, this is not true when there may be other, higher

priority processes running at the same time; that is why we had

to write our own process scheduler.

Interprocess communication is very flexible in Simula. The

language really imposes no restrictions on how processes

communicate. In our simulation, in various places, processes

communicate via globae. tables, procedure calls, and queues of

packets.

Report No. 4473 Bolt Beranek and Newman Inc.

In conclusion, Simula provides a p~werful, convenient base

language because it has added to Algol •60 a small number of

constructs with wide application.

A.1.2 The Simula CLASS

A variable has a type (at compile time) and a value (at run

time). The built-in types are integer, real, boolean and

character. Every class definition defines a new type (possibly a

subtype of some other class), One can define a variable of some

class (i.e., of some class type), in which case the value of the

variable is a pointer to an object of that class (i.e., of that

type, or possibly some subtype) in the same way that the value of

an integer variable is some integer. We can consistently say

that both the variable and the value have type integer, and so it

is with classes. Arrays of any type may be defined.

The word object refers to an instance of a class. Naturally

enough, the definition of a class defines exactly what is in an

object of that class (type). A class can be defined with any or

all (or even none) of the following:

- an argument list (used when an object is created)

- variables (i.e., local variables)

- procedures

- code

4-467-

Report No. 4473 Bolt Beranek and Newman Inc.

For a given class, one can create an instance of that class

or define a variable which refers to instances of that cl-3ss (aud

onrly that class). When one creates a new object, one must give

the actual arguments if the class was declared with an argument

list, and orie gets back a value which can be assigned to a

variable of the right type.

For a given object (if one has a pointer to it, that is),

one can:

- access (read/write) the variables

- call one of the object's procedures

- transfer' control to the object's code (see below)

Both the procedures and the code are scoped INSIDE the object.

That is, they can refer to the object's variables as ordinary

variables without going through a pointer. Thus a procedure can,

and typically will, have different effects and/or results

depending on the particular object it belongs to. In this sense

one can think of the main program as being a separate object.

Suppobe one defines a class item:

class item
begin
ref (itei) next
iateger key
ene

-'468- p.

Report No. 4473 Bolt Beranek and Newman Inc.

then every item contains two variables, next and key. Next is a

pointer to another item (ref means pointer to), and key is an

integer variable. One can uz;e the class "iter," as follows:

ref (item) head ; I defines a variable of type item
head :- new item ; I assigns a new item to head ;
head.key 1 ; I assigns 1 to its key variable
head.next :- new item ; I assigns another new item to next
head.next.key := 2 ; I assigns 2 to its key variable ;

The only difference between ";-" and ":="1 is that the formtur is

used for pointer (reference) assignment.

A.1.3 Communicating with Data Structures

Data structures may usefully be implemented as separate

objects. The advantages of this are:

- they have their own name space (i.e., set of local

variables), which may be hidden.

- all the procedures which manipulate the structure can be

collected together inside the object.

- it is easy to create separate, completely independent

copies of the data struccure.

There are several ways of defining operations on data structures.

Suppose we have defined classes queue and message, and we have a

queue variable (i.e., pointer), q, and a message, msg. Then

adding the message to the queue might be defined as:

4- 469 -

Report No. 4473 Bolt Beranek and Newman Inc.

- an ordinary procedure Mdd(q, m), which has access to the

local variables of q.

- a procedure within the class queue, invoked by a call

q.Add(m)

- a procedure within the class message, invoked by a call

m.GoesInto(q)

The second method is preferable and is used in our simulation

since it enforces independence between separate classes.

A.1.4 Class Prefixin6

A class may be used to define another class. For example:

class packet
begin
integer length, number;
boolean error;

end;

defines a packet with a length (in bits), a packet number, and a

flag which is set to indicate a line error. Then we can define a

data packet in terms of class packet:

packet class dataPkt
begin
integer source, dest;
real rietEntryTime;

end

- 470 -

Report No. 4473 Bolt Beranek and Newman Inc.

which defines a data packet to be a packet which in addition to

length, number and error flag has a source and destination IMP

number, and the time when it entered the network.

Other types of packet can be defined. For example, a

routing update packet looks like:

packet class updatePkt (nLines); integer nLines;
b'gin
integer age, serialNumber, impNumber;
boolean retry;
real array del [1:nLines];
end

Note that updatePkt is parameterized by the number of lines

in the IMP for which the delay is being reported. The age,

serial number and retry fields are used in the routing update

protocol; the array del contains the delay out each line for the

specified IMP.

In general, if Y is defined with X as a prefix, then Y is

said to be a subclass of X. This is because every Y is also an

X, so the set of Y's is a subset of the set of X's. Do not be

confused by the fact that every instance of Y contains an

instance of X.

As a consequence, if a data structure or routine has been

defined to operate on objects of type X, then it will also handle

objects of type Y. It is this technique which is used to extend

Simula to include most of the simulation features. First the

-471-

Report No. 4473 Bolt Beranek and Hewman Inc.

main block is prefixed with the class SIMULATION, which means

that all of 1he t'ings defined inside SIMULATION are available

inside the main program. Then a class dfinition can be prefixed

by PROCESS, which means that not only does the body of the class

have access to all the routines defined inside PROCESS, but also

that any routine anywhere else which has been defined to operate

on PROCESSes will work on this new class.

A.1.5 Parallel Processing

When an object is created, control iL transferred to the

code inside the object. In the default case the code is used for

nothing more than initialization, and when the code is finished

control is returned to the point of creation.

However, the object may transfer control back to :he point

of (its) creation in such a way that its local state (i.e., stack

and program counter) is preserved. In this case, control may be

transferred back to the object at any time (by anyone who has a

pointer to the object). Call an object in this state a process.

Note that the main program is a process.

When one transfers control to a process, it is restarted at

the poiný it left off, like returning from a subroutine call.

There is no facility for transferring control to some arbitrary

point within the process (and a good thing too I).

- 472-

Report No. 4473 Bolt Beranek and Newman Inc.

If two processes have pointers to each other, they can

transfer control back and forth. At any time, however, there is

precisely one Drocess runni•,,. Control can only be transferred

explicitly.

A.1.6 Communication Among Processes

Processes may, of course, communicate via global variables.

But if nne process has a pointer to anothe.nr process, then the

first process may either:

- alter a local variable in the second process by an

explicit assignment or by calling a procedure to do it,

- or call a procedure in the second process, passing

information through the argument list.

Although Simula alloos one object to tinker with the local

variables of another object, this is probably not a good idea.

_ An object may declare some or 311 of its variables to be hidden,

so that they canhot be accessed from outside the object itself.

hi.s forces all accesses to be via calls to procedures within the

obijeat. This approach is recommenaed, since then tee internal

data structures of the class, or the code used to manipulate

them, can be ý.hinged without affecting any code outside the class

(unless the procedure calling sequences change, of course).

- 473 -

SReport No. 4473 Bolt Beranek and Newman Inc.

Most communication between processes in our simulation is

implemented by procedure calls, but in some cases a process may

read a variable from another process directly. This is

particularly ý;rue in the case of the line protocol, which is

implemented with code in the task, modem input, and modem output

processes. A process never changes a variable in another process

directly. This is always done with a procedure call.It I

A.1.7 Applicaticn to our Problem

In designing our simulation at the top level, we had to map

entities in the simulation onto processes, objects, procedures

and so on. It is important to realize that there is a very fine

line between active and passive objects in Simula. Unless one

actually tries to transfer control to it, it is impossible to

tell whether or not an object is P separately running process.

Thus if one calls a procedure inside a queue object to put a

message on the queue, one has no way of knowing (presumably one

doesn't care) whether the queue is a simple data structure, an

object which is collecting statistics on each message, or an

active process which is responsible for sending the message on

(possibly based on some complex calculationi).

Now ruppose that we are simulating two It" routines that

wish to communicate via some data structure, such as a queue or

table. Presumably the IMP routines correspond to Simula

- 474 -

Report No. 4473 Bolt Beranek and Newman Inc.

processes. If the data structure is a separate object, which

handles objects of some particular class, then the communicatin

between the two routines can be made independent of the format of

the information being pazsed, and transparent to the two

routines. Suppoze the data structure is a hash table with two

operations, Enter and Search, which store and retrieve objects of

class Item (defined above). Then the two IMP routines can

communicate via objects of class particularItem:

Item clasb particularitem
begin
I all the information that is to be

transferred between the two IMP's
end ;

Then one IMP routine can pass a particularltem to Enter, which

will take it as an item and store it in the table, and the other

routine can call Search and get it back.

The data structure routines do not know anything about what

goes into a particularItem; they are only interested in dealing

with Item's. The two IMP routines do not have to know anything

about the internal structure of the hash table, or the routines

that manipulate it (except the name of the key field in an Item).

Thus the data structure can be chang,.1 w1,,hout changing the IMP

routines,,and the IMP routines can agree to exchange different

kinds of information without changing the data structure

routines. It i3 also possible for one IMP routine to sto e and

4- 475 -

Report No. 4473 Bolt Beranek and Newman Inc.

retrieve extra fields in a particularItem which the other IMP

routine does not look at.

A.1.8 A Problem

There is a pro)lem with the above discussion. When a

particularItem is entered into the hash table, it is no longer

obvious to the compiler that it is a particularItem and not just

an Item, so when Sjarch returns the object, the type of the

function value is Ttem, even Though the type of the object is

particularItam. Simula requires an explicit check that the Item

returned is iideed a particularItem before any of the extra

fields in it can be accessed. The problem arises because Search

has been declared as a function that returns an Item, and Simula

does not do the flow analysis that would allow it to conclude

that if every item that goes into the hash table is a

particularItem, then so is every Item that comes out. This is an

annoyance more than anything else. In the simplest case, when

one knows that the Item is a particularItem (and not some other

special sort of Item), it requires an extra two words to say it:

Search (.) qua particularItem

ii

instead of:

Search C...)

• 476 -

Report No, 4473 Bolt Beranek and Newman Inc.

f Note that there is the overhead of a runtime check.

A.1.9 Queues and Scheduling

Simula provides skeletal facilities for queueing and

(• scheduling. The choice was made to abandon the built-in queueing

mecharism, but to build on top of the existing scheduling

facilities. The built-in queueing operations use a very clumsy

syntax, are inconvenient to extend, and can easily be rewritten

in a small amount of code. The scheduling operations, on the

other hand, provide a minimal set of primitives with a convenient

syntax. They are easy to extend, but would have required a

reasonable amount of effort to recodc. Either decision can be

changed easily because each is implemented by a Simula CLASS.

The implementation of queueing or scheduling can be changed

without affecting the user interface, which is a set of functions

within the class.

In our application, there is extensive interaction between

queueing and scheduling. The basic queue operations of Add and

Remove are supplemented by combined queueing/scheduling

operations: AddUa±t adds an element to a queue and forces the

process Lo wait until it has been removed from the queue;

RemoveWait forces the process to wait until an element has been

put on the queue, then removes and returns it. Because the LasiC

task of the IMP is to process packets, Add and RemoveWait are the

4- 477 -

Report No. 4473 Bolt Beranek and Newman Inc.

basic mechanisms both for communisation and scheduling among

processes.

Another tipe of process is clock-driven. It is woken at

each tick of r clock, performs some predetermined functions, then

waits until the next clock tick. Simula provides a basic

scheduling operation, "wait for t seconds of simulated time,"

which can be used to implement the regular ticking of a clock.

The final scheduling primitive is the function which

simulates execution on an IMP CPU. Because there are many

processes running at once, at several priority levels, the time a

process takes to execute t seconds worth of CPU cannot be

determined in advance; it will be t seconds plus the time taken

by any higher priority processes which have interrupted it. The

scheduler, which provides a function to delay a process by the

time it takes to execute t seconds CPU at a given priority level,

must simulate an interrupt stack and a priority queue.

A.1.10 Class Simulation

The extra features that make Simula a simulation language

are contained in two predefined classes, Simset and Simulation.

By prefixing a program with the class Simuiation (which itself

contains Simset), one gets all the definitions in the class

included in the program in the same way that a particularitem

gets everything that was declared in Item.

- 478 -

Report No. 4473 Bolt Beranek and Newman Inc.

Simset contains declarations for class LINK, which is an

element of a two-way list, and class HEAD, which is the head of a

two-way list. Also included are routines for manipulating these

lists. Class SIMULATION contains the definition of LINK class

PROCESS, which is just a process in the sense we have been using

the word, together with some routines for doing scheduling using

simulated time.

Thus if one defines a class which is prefixed by PROCESS,

one can create instances of the class which can be used with all

the routines in SIMULATION, as well as all the routines in LINK

for making two-way lists.

A.1.11 Details of Class PROCESS
9

In this section we will give a description of the class

PROCESS. With the single exception of the syntax of the

activation statements, all of the extensions for simulation can

be coded in Simula. Ohlin [E] has written these extensicns in

about 200 lines of Simula. The activation statement could be

defined in Simula as a procedure, except that as presently

defined it would need optional arguments, which Simula does not

support. It is important for us that the simulation features

have this property, since we may want to recode them for

efficiency, or to extend the fairly limited set of primitives

proiided by Simula.

-479-

Report No. 4473 Bolt Beranek and Newman Inc.

Remember that a PROCESS is 'a process, that is, it is an

object which has been set up so that control can be transferred

to it. A process thus has a local stack, and a program co'unter.

When control is transferred to a process, the computation is

resumed at the stored value of the program counter. It is not

possible to restart a process at some arbitrary point, but only

at the point where it '-ft off last time.

A PROCESS is a LINK. All a LINK is, is a pointer to the

next LINK in a linked list, plus some routines for adding and

removing the LINK from lists. Thus these operations are also

included in a process. They are used by the scheduler and

(hence) are nct accessible to the user.

A PROCESS also includes a real variable which stores the

time at which the process is to be woken up (possibly infinite),

a flag which tells whether or not the PROCESS is scheduled (or

running), and another or not which tells whether it is alive. A

process can be: running (ACTIVE), scheduled (PENDING),

unscheduled (IDLE), or dead (TERMINATED). A PROCESS becomes

terminated when it exits its outermost block and one can no

longer transfer control to it. The ACTIVE PROCESS is at the head

of the scheduling list. All PENDING PRCCESSes are on the

scheduling list in order of their wake-up time. Note that a

PROCESS must exist on some list, or as the value of some

variable, or it will cease to exist, and will be

garbage-collected.

-'480 -

Report No. 41173 Bolt Beranek and Newman Inc,

CURRENT returns a pointer to the currently active PROCESS

(at the head of the scheduling list). TIME returns the time.

PASSIVATE puts the CURRENT PROCESS to sleep, and wakes uD the

next PROCESS (the CURRENT PROCEoS is pulled off the head of the

scheduling list; CURRENT is changed to be the new head; TrIME is

advanced to the wake-up time for this PROCESS; and control is

transferred to it, using RESUME). Note that PASSIVATE does not

return the PROCESS that called it back into the scheduling list.

Thus the PROCESS which called PASSIVATE may be made inaccessible

by the call, in which case it will be garbage-collected.

HOLD(DEL) does a PASSIVATE, but also inserts the process

into the scheduling list, to be woken at TIME - DEL. All of the

ACTIVATE statements simply add a process (possibly the process

doing the ACTIVATE) to the scheduling list at some specified

time, or before or after some other process. CANCEL removes a

process from the scheduling list as though it had done a

PASSIVATE itself. All of these operations simply involve

searching the list and adding or removing a process.

A.1.11 A Note on Queues

There is an obvious operation which is not provided in

Simula, but is easy to add. This is a message wait. We want an

operation which puts a process to sleep until a message arrives

in a given queue. A variable must be added to the queue which

- 481 -

½

Report No. 4473 Bolt Beranek and Newman Inc.

specifies the process to be woken up, and Add must be changed to

wake up the process when someone adds a message to the queue.

Assuming that a class queue already exists, with functions

Add, Remove, and Empty (in Simula, HEAD and LINK perform this

function, but not well), the code shown in figure Ae1-s will

define a new class with the desired properties.

A.1.12 A Short Guide to the Simulation Architecture

In Simula, classes are used for e variety of purposes. They

may be used as simple data structures, such as a packet, complex

data structures, such as a queue, or processes, in our

simulation, we must distinguish between Simula processes that

represent real objects, and Simula processes that represent

processes. There are four roughly distinct classes of objects in

the simulation.

First, the IMP and hosts are Simula processes that represent

real objects. They contain data structures and functions, but

their code part is used only for initialization. They do not

take an active part in the simulation. Part of their structure

* consists of pointers to other processes, which represent the

processes running in the real IMP or host. The initialization

code serves to create and initialize both the data structures and

the processes. The data structures in the IMP are those for

routing and buffer management.

4- 182 -

Report No. 4473 Bolt Beranek and Newman Inc.

queue class newQueue ; ! dfine newQueue as an extension
begin to queue
ref (process) wakeMe ; I pointer to process waiting for

- ~~~~~~~~a message to arriie rf(s)poeueIrtrst

ref (nag) procedure Remove; I procedure returns a pointer to aSmsg (i.e. mnessage) ;I begin
if Empty then I if queue is empty then process mi

wait for a message to arrive
begin
wakeMe :!urrent ; I set pointer to current process
passivate ; go to sleep, wait for messageend ;

wakeMe :-none ! when woken, clesir pointer

Remove this queue.Reznove ; I return message by calling
ordinary queue operation

end

procedure Add (%m) ; ref (msg) m ; ! procedure to add message
to queue

begin
this queue.Add(m) ; I add message to queu3 using

ordinary queue operation

if wakeMe =/= none I if pointer is set ...

then activate wakeMe ; I ... then wake process which
is waiting for a message to
arrive

end

end ;

Figure A.1-1

Second, there are all the processes running in the IMP or
host, They contain a pointer back to the IMP or host, data

structures and functions, and code to simulate the operation of

the corresponding real •MP or host process. The modem output

process, for exa-mLnle, contains some of the data structures for

3.

Report No. 4473 Bolt Beranek and Newman Inc.

the line protocol, as well as the code necessary for outputting a

packet to the modem.

Third, there are the objects which implement data

structures, such as the packet and message queues. These contain

some structure and a set of functions for operating on the

structure.

Fourth, there are the packet and message objects, which are

simply a set of fields with no structure. The only functions

implemented by packet or message are simple functions such as

clear,

A complet~e list of the cbjects and functions defined in the

19 siwmIation• is given in the implementation guide.

48'I.-

ii

t

Report No. 44T3 Bolt Beranek and Newman Inc.

--REFERENCES

[1] Ohlin, Mats. "A Working SIMULA Definition of SIMSET and

SIMULA- ON," Swedish National Defense Research Institute,

S-104 50, Stockholm 80, FOA rapport C10055-M3(E5), September

1976.

O

-- 1 8

Report No. 4473 Bolt Beranek and Newman Inc.

APPENDIX 2. SIMULATION IMPLEMENTATION GUIDE

Global Variables and Data Structures

parameters:

numCh number of logical channels on a line
numBuffers number of buffers per IMP
nImps number of IMPs in simulation
nSimplex number of simplex lines in simulation

variables:

nextOffset next available entry in IMP's line delay ta
GlobalPacketCounter counter for all data packets generated
seed seed for random number generator
lex input scanner
standardGremlin default line error process
debug file for debugging output
trace file for trace output

data structures:

ImpMap table of IMPs by number
OffsetTable table of offsets into each IMP's line delay

table, by IMP number

Clas3. Packet

fields:

next pointer to next packet on qizeue
number global packet number
length length of this packet in bits
error flag to indicate line error
priority packet's priority within each IMP

SbufferType type of buffer for this packet
sleeper who is to wake up when packet is processed
nextEntryTime time packet will arrive at next IMP
lineNunber number of incoming line

routines:

Clear clear all fields
Copy copy all fields into another packet

- 486-

Report No. 4473 Bolt 3eranek and Newman Inc.

Packet Class DataPkt

fields:

source number of source IMP
dest number of destination IMP
creationTimne time message was created by source hos
netEntryTime time message entered source IMP
nodeEntryTime time packet entered current iMP
nodeExitTime time packet entered current IMP
channel logicel channel
channelBit link protocol sequence bit
ackFlag array of acknowledge bits for the line

the opposite direction.
count number of IMP, passed through
route array of IMPs passed through

routines:

Clear clear all fields and call packet Clear
Copy copy all fields into another packet an

call packet Copy
Register add the given IMP to route and

increment count
PrintRoute print route on the trace file

packet Class UpdatePkt

parameters:

nLines number of lines whose delay is given i
this update

fields:

impNumber number of originating IMP
serialNumber update protocol sequence number
age time since update was created
retry flag to indicate echo is requested
del array of delays, one fcr each liae

routines:

Clear clear all fields, and call packet clea
Copy copy all fields into another packet an

call packet copy

- 487 -

I

Report No. 4473 Bolt Beranek and Newman Inc.

Class_.MessaIe

fields:

next pointer to next message
source number of source IMP and host
dest number o" destina"ion IMP and host
length length of message in bits
creationTime timie message was created

Class Wimp

parameters:

nlmps number of IMPs in simulation
nSimplex number of simplex lines in simulation
number number of thic IMP
nLines number of lines out of this IMP
numBuffers number of buffers in this IMP

pointers to outside processes:

localHost local hcst process
impCPU scheauler process for this IMP
outLine3 array of line output processes

pointers to internal processes:

hostIn host-to-IMP process
hostOut IMP-to-host process
task forwarding and routing process
modemIn array of modem-to-IMP processes
modeOut array of IMP-to-modem process
timeout process for fast and slow timeouts

internal data structures:

traceFlag tracing on or off for '*'is IMP ?
debugF!zg debugging on or off for this IMP ?
clockRate ratio of this IMP~s clock to simulated time
clockOffset time at which this IMP started
h heap used in SPF routing calculation
LinDelay delay for every line in simulation
.threshiold current delay threshold
initialTh','.hold initial delay threshold
thresholdDe<cay amount threshold is reduced each time

-488

Report No. 4473 Bolt Beranek and Newman Inc.

t UpdateAge age of routing update from each IMP
UpdateSN serial number of latest routing update

SI Hfrom each IMP
UpdateTimer timer for updates from each 1MP on each

line
fixedRoutingFlag if set, do not generate routing updates
randomRoutingFlag if set, forward packets at random
OutLine routing table
freeBufferCount count of total number of free buffers
BufferCount count of buffers in each buffer class
BufferMax maximum allowable number of buffers in

each buffer class

routines:

PrintRouting print routing table on debug file
PrintDelay print line delays on debug file
TimerTick decrement UpdateTimer and send

routing update if necessary
AgeTick age routing updates
SendUpdate construct update packet from update

tables and send it out given line
AvarageDelay reduce threshold by threshold decay;

average delay on each line; i.f for any
line the change in delay is greater thar

the threshold value, then reset the
threshold, set the delay in each line tc
the average dilny just computed, then sf
out a routing update for this IMP over z
lines.

PrintUpdate print update on debug file
ProcessUpdate accept or discard update packet;

echo if appropriate
Acceptable check serial number of incoming update
UpdateRouting recompute shortest path tree and

update routing table
FreeBuffer decrement appropriate BufferCount
AllocBuffer create buffer
AllocateReassembly check reassembly count (BufferCount (I]1
BecomeReassembly if possible, reassign buffer to type 1
BecomeStoreAndForward if possible, reassign buffer to type 2
AllocateUncounted check uncounted count (BufferCount [3])
DebugPrint print packet on debug file
StartUp activate host and IMP processes
InitializeBufferLimits initialize BufferHax array

4- 489 -

i
Report No. 4473 Bolt Beranek and Newman Inc.

code:
Initialize and activate local processes and local host,

initialize heap and buffer counts, put entry for local lines
into global offsetTable, then quit.

Class TaskProcess

parameters:

priority impCPU scheduling priority
serviceTime (constant) service time per packet

pointers to other processes:

myImp IMP which owns this process

internal data structures:

inQ input queue for data packets
updateQ input queue for routing update packets
asleep flag indicating this process is idle

routines:

Add add a packet to the correct queue and wake
the process if it is asleep.

code:

If there is an update to be processed, call the IMP i'outine
ProcessUpdate.

Otherwise, if there is a data packet, perform duplicate
suppression, buffer allocation, and forwarding to host or modem
output routines. If the packet was accepted and came from a
modem, flip the receive channel bit and send an acknowledgment
(wake up modemOut if it is asleep); if it was a duplicate,
send a duplicate acknowledgment (wake up modemOut if it is
asleep).

- 490 -

Report No. 4473 Bolt Beranek and Newman Inc.

Class ModeuIlnProcess

parameters:

priority impCPU scheduling priority
serviceTime %constant) service time per packet
lineNumber number of line for this input process

pointers to other processes:

myImp IMP which owns this process
myOut IMP-to-modem routine for the other half

of this duplex line.

internal data structures:

inQ queue of packets to be input, contains
most one packet.

notReady count of packets in inQ, at most one.
ackFlag array of receive flags, one per logical

routines:

modemInterface accept or reject packet from line
ackPacket flip receive flag on specified channel

code:

For each arriving paiket, add update packets to task update
queue, and data packets to task input queue, unless packet is
in error or buffer for next packet is unavailable. For data
packets, process acknowledgment bits and free any
acknowledged packets.

Class ModemOutProcess

parameters:

priority impCPU scheduling priority
serviceTime (constant) processing time per packet
lineNumber number of line for this output process
retransmitWait retransmission interval

-491

Report No. 4473 Bolt Beranek and Newman Inc.

pointers to other processes:

Imp IMP which owns this process
myLine line input process
myModemIn modem-to-IMP routing for the other half of

this duplex line.

internal data structures:

inQ queue of packets waiting for output
nullPacket null packet for sending ac'-nowledgmens
unAckedPackeL array of packets waitina for

acknowledgment
packetCount total number of packets waiting
ackToGo signals that an acknowledgment should be se
ackFlag array of send flags, one per logical

channel
asleep flag indicating process is idle
freeCurrent flag set if acknowledgment received for

packet being output.
del delay out the line
totalDel accumulator for delay averaging
totalPackets accumulator foi delay averaL.ing
avgDel result of last dclay ý!;eraging
otherImpNumber number of neighboring ±MP

routines:

lallyDel accumulate delay for this packet
AverageDelay compute average delay, clear accumulators,

and report difference between old delay
and this delay.

GrabChannel allocate logical channel
Free tally delay of acknowledged packet, flip

ackFlag, clear 1TnackedPacked entry,
aecrement pa'ketCount and free buffer.

Ack set ackToGo and wake up process if asleep
Transmit add packet to input queje, increment packet

count and wake up process if asleep

code:

ModemOut is woken up by a call to Transmit, or by a periodic
wakeup by fastTim;-out, or by P call to A(k to send an
acknowledgment. i'.ansmit is either called by Task, with a
data packet, or from SendUpdate (a routine in Wimp), with an
update packet.

402

S •49.k_

Report No. 4473 Bolt Beranek and Newman Inc.

When ModemOut is woken, it checks to see if it should transmit
a packet. If there are any packets to be retransmitted, it
retransmits one of them; if there are any packets on its input
queue, it removes the first one and transmits it; if the
ackToGo flag is set, indicating that a packet has been
received but not acknoiledged, a null packet is sent and
the flag cleared; if there is nothing to do, ModemOut goes to
sleep.

If ModemOut has to send a packet, it passes it to the line
input process for the line, then goes to sleep. When it is
woken by the simulated completion interrupt, it frees the
buffer if it just sent an update packet, then checks to see if
another packet should be sent.

Class HostInProcess

parameters:

priority impCPU scheduling priority

serviceTime (constant) processing time per packet

pointers to other processes,

myImp 14P which owns this process

internal data structures:

inQ queue of packets to be input

routines:

HostInterface read in a message from the host;
create a packet for it and put it
on the input queue

code:

S Remove a packet from the input queue; execute serviceTime

units of simulated time and pass the packet to Task.

-493 -

Report No. 41173 Bolt Beranek and Newman Inc.

Class HostOutProcess

parameters:

priority impCPU scheduling priority
serviceTime (constant) service time per packet

pointers to other processes:

localHost host for this IMP

myImp IMP which owns this process

internal data structures:

inO queue of packets to be input

code:

Take packet from input ;'.'eue; put it on the input queue of the
host's packetSink process, then free the buffer.

Class T.imeoutProcess

parameters:

priority impCPU sdheduling priority
nLines number of duplex lines in this IMP
period time between successive executions

pointers to other processes:

myImp IMP which owns this process

internal data structures:

tick counter to count 25 fast ticks
counter12 counter to colnt 12 slow ticks
counter15 counter to count 15 slow ticks
currLine line to be woken during this execution

routines:

DebugPrint print event on debug file
FastTimeout if current line is asleep, wake it up
SlowTimeout increment counter12; call IMP routine

RoutingTick to age routing timers and

S-494 -

Report No. 4473 Bolt Beranek and Newman Inc.

clear counter if iL is 12; increment
counter15; call IMP routine AverageDelay
to compute average delay on each line ar
clear counter15 if it is 15.

code:

Go to sleep until next tick (occurs every period seconds).
Wake up and increment tick counter. If counter is 25, call
SlowTime out and clear counter. In either case call
FastTimeout.

Class Line

parameters:

sender sending IMP number
sindex sending IMP's index for line
receiver receiving IMP number
rIndex receiving IMP's index for line

pointers to other processes:

lin input process for this line
ion output process for this line

internal data structures:

traceFlag tracing on or off for this line?
debugFlag debugging on or off for this line?

routines:

DebugPrint if debugging is on for this line, and t
specified debugging output is enabled,
print the specified packet and message.

code:

Create input and output processes for this line. Connect
together the sending IMP's modem output process, the input
process, the output process, and the receiving IMP's modem
input process. Start up the input and output processes.

- 495 -

SReport No. 4473 Bolt Beranek and Newman Inc.

Process Class LineInput

parameters:

lag speed of light delay over line

bitTime time to clock one bit onto line

pointers to other processes:

sender modem output process on sending end
otherEnd corresponding lineOutput proce. which

transfers packets to receiving I:P

internal data structures:

inQ queue of packets being accepted.. contains

at most one packet

code:

Remove packet from input queue, compute packet's arrival time
at other end of line, add packet to transit queue at other &,nd
of line, then wake up sender (completion interrupt).

Class LineOut

parameters:

bitTime time to clock one bit onto line
errorRate bit error rate

pointers to other processes:

receiver modem input process in receiving IMP
lineError process which decides whether packet

is it! error.

internal data structures:

transitQ queue of packets in flight

code:

Remove first packet from transit queue, then wait until its

arrival time. Call error procedure in the lineError
process to decide whether this packet should get a line error,

-1496-

Report No. 4473 Bolt Beranek and Newman Inc.

then pass the packet to the modern input process by calling the
.modem Interface routine.

Class Host

parameters:

nLmps number of I"P3
number number of this IMP, and t-ence this host

~ ImpProcess IMP's host input process

4internal data structures:

traceFlag tracing on or off for this host ?

debugFlag debugging on or off for this host ?

pointers to other processes:

Source array of message generating processes
Sink packet accepting procass
messa Yr 3ut host-IMP interface process

routines

Start start up a new message generating proce
Close stop a message generating process
PrintArri*l print packet on trace and/or debug file
PrintMessag,,Cwt print f-ges5age on debug fikle

iparameters:

myHost pointer to host
Sdest destination Yi¶P and host for all messaE

from this generator
rate mean messagc generation rate
avgLength mean message lengt1h

code:

Generate messages with negative exponential inter-arrival
times and negative exponenrial lengtha; put each message on
messageOut's queue for transmission to the IMP.

- 497 -

Report No. 44773 Bolt Beranek and *tewman Inc.

Class easaO__

parameters:

myHoat pointer to host

internal data structures:

inQ queue of messages

code:

For each message put on the queue, call the IMP routine
HostInterface, in the IMP's host input process.

Class PacketSink

parameters:

myHost pointer to host
serviceTime (constant) time per packet

internal data structures:

inQ input queue of buffers

code:

Remove packet from input queue, call TraceArrival to log
packet, then give packet back to the Simula runtime system.

E

N - 498-

S.

